美国联邦众议院人工智能工作组报告(273页)

43ab02ac494f0811d3301d3cfda1537f.png来源: 欧米伽未来研究所

欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。(点击这里查看欧米伽理论

    这份报告由美国联邦众议院两党人工智能工作组(Bipartisan House Task Force on Artificial Intelligence)撰写和发布。该工作组由来自美国两党议员组成,旨在促进人工智能(AI)领域的政策研究与发展,确保美国在AI技术创新和应用中保持全球领导地位。

    报告集结了来自政府、学术界和产业界的专家意见,提出了一系列政策建议,旨在推动负责任的AI创新,同时解决与技术应用相关的伦理、隐私和安全等问题。报告的目标是为联邦政府提供AI技术治理、研发投资、标准制定以及国际合作等方面的具体指导。

报告背景与目标

人工智能(AI)技术正在全球范围内迅速发展,并对经济、社会、政治和国家安全等各个领域产生深远的影响。随着AI技术逐渐渗透到各行各业,包括医疗、金融、教育、交通和制造业等,如何有效管理和引导AI技术的发展,成为全球各国面临的重要挑战。美国作为世界上最具创新力和技术实力的国家之一,始终处于AI技术发展的前沿。然而,随着AI技术的快速进步,如何确保其在负责任的框架下进行应用,避免潜在的社会风险和伦理问题,成为了必须解决的问题。

为应对这一挑战,美国国会设立了一个由两党成员组成的人工智能工作组,旨在为政府在AI研发、应用和治理方面提供政策建议。该工作组汇聚了来自学术界、产业界以及政府部门的专家,以推动AI技术的创新应用,同时确保其发展符合道德标准和法律框架。这一工作组的目标是确保美国在AI领域继续保持全球领导地位,同时强化AI技术的负责任使用,避免技术滥用带来的潜在危害。

报告的背景主要来源于对AI技术快速发展的关注,尤其是在技术创新与社会、经济、伦理之间的矛盾中寻找平衡。AI技术的应用场景广泛,从简单的自动化工具到复杂的深度学习模型,这些技术的使用在提高生产效率、推动科技进步的同时,也带来了隐私泄露、算法歧视、就业市场冲击等问题。面对这些挑战,政府亟需制定科学、合理的政策,以确保AI技术的健康发展。两党工作组的成立正是为了在这一复杂背景下,提出一系列实质性的建议,推动AI技术发展同时保障社会公平、个人权益和国家安全。

 该报告的目标是为联邦政府和相关决策者提供一整套针对AI研发、应用、标准化和治理的政策建议,确保美国能够在全球科技竞争中保持领先地位。报告强调,AI不仅是一项技术突破,更是一个关系国家经济、社会福祉、国际竞争力和国家安全的核心问题。因此,报告提出的政策不仅仅针对技术本身,更包括了如何管理和引导技术应用的方方面面,如数据治理、隐私保护、技术标准、行业合作以及国际合作等。

报告的目标还包括推动美国在AI研究与开发(R&D)领域的持续投资,特别是基础研究。报告认为,保持技术创新的活力需要稳定的资金支持和跨学科的合作。这意味着政府应当继续支持大学和科研机构的AI研究,推动产业界和学术界之间的合作,并通过公私合作伙伴关系加速技术转移和商业化应用。此外,报告还强调AI伦理和法律框架的建设,建议政府制定相应的标准和规定,确保AI技术在应用时不违反社会公德或引发不必要的社会冲突。

 另一个目标是确保AI的应用符合伦理标准。随着AI技术的应用越来越广泛,其对个人隐私、数据安全、就业市场和社会公平的影响日益突出。报告建议,政府应当通过持续的社会评估和监管,确保AI系统不会加剧社会不平等或侵犯个人权益。同时,报告还提出,AI治理应考虑到不同领域和用例的差异,采取灵活而合适的政策框架,以应对AI技术在各行各业中的不同挑战。

最后,报告的目标之一是加强国际合作。随着全球AI技术的飞速发展,各国在AI的研发和应用上竞争激烈。美国希望在全球范围内树立负责任的AI技术领导地位,推动国际间的合作,特别是在AI标准化、伦理规范和技术共享方面的合作。通过与国际伙伴的合作,美国能够在全球范围内推广其负责任的AI开发模式,同时确保全球AI治理体系的公平性和可持续性。

总之,该报告的背景和目标在于通过提出一系列具有前瞻性的政策建议,帮助美国在AI技术的创新、应用和治理方面继续保持全球领先地位,并推动AI技术以负责任和可持续的方式造福社会和经济。通过这些举措,报告期望美国能够在全球AI竞争中脱颖而出,同时确保AI技术为全社会带来公平和正义。

报告关键发现

联邦政府应利用核心原则并避免与现行法律冲突

管理联邦政府使用人工智能 (AI) 的政策应与一套集中的核心原则保持一致,以确保各机构在如何使用和采用 AI 方面的统一性。实施这些原则的指导方针应基于现行法律和既定的政策要求,例如数据和信息记录、联邦信息技术系统和网络安全、采购和收购、劳动力管理、绩效和问责制等方面的规定。然而,各机构应具备一定的灵活性,以制定符合其自身需求的 AI 使用政策,但前提是这些政策与核心原则保持一致。AI 治理应与 AI 系统或用例的复杂性和风险状况相称。例如,简单的流程自动化和工作流程工具不应与具有访问敏感公共部门数据集的大型语言模型适用相同的系统治理控制。

此外,管理机构使用 AI 的政策应提供涵盖 AI 生命周期的整体性、以运营为中心的指导,以实现高效的机构实施。AI 系统可以在特定任务或程序性用例中发挥多种应用作用。针对政府机构使用 AI 的政府范围内的政策,应在现行的联邦信息政策要求(例如既定的隐私和网络安全政策)框架内进行设计。各机构应根据具体的 AI 用例,决定在适用的现行法律和法规要求的前提下,实施哪些必要的限制措施,并适当地考虑风险水平。

联邦政府应警惕基于算法的决策

政策制定者应警惕“基于算法的”决策在联邦政府内的盛行。相反,政府应追求“基于算法的信息辅助”决策,支持其任务和计划。基于算法的信息辅助决策需要对 AI 系统进行适当的治理,并通过深思熟虑的政策设计来应对 AI 系统在某些用例中的固有限制。国会和各机构应考虑在不同用例中,算法驱动的决策所需的人工参与程度。

联邦政府应向公众通知 AI 在政府职能中的角色

随着 AI 被实施以支持联邦机构的工作流程并为决策提供信息支持,关键利益相关方(包括那些受到机构决策或裁定的实质性和有意义影响的个人和实体)应获得有关 AI 参与的适当通知,并获得适当的上诉和人工审查渠道。

各机构应关注 AI 系统的基础

推动采用 AI 技术的国会和联邦机构在采用 AI 技术时,应注意网络安全、隐私、数据和 IT 基础设施的需求。确保 AI 技术的负责任采用和使用的关键在于关注这些基本要素。

联邦劳动力中的 AI 角色及其相关的 AI 知识和技能尚不明确,且存在较大差异

了解联邦劳动力中所需的 AI 角色,需要一个标准的 AI 人才分类法或劳动力框架。目前,由于 AI 相关角色的不断演变和定义不统一,AI 相关角色的跟踪存在困难。这也导致了在招聘和聘用与相关职位相匹配的 AI 人才时面临的挑战。明确 AI 相关角色在联邦政府中的知识和技能需求至关重要。标准的分类法或劳动力框架可以更好地对齐 AI 培训项目与劳动力需求,改善联邦政府的招聘路径,并改进对 AI 技能供需的分析。

基于技能的招聘对满足联邦劳动力对 AI 人才的需求至关重要

要满足美国劳动力的 AI 培训需求,需要通过一种“全方位”的方法来开发和建立满足公共部门需求的人才管道。像网络安全等技术领域的培训和认证,越来越多地通过非传统途径(如训练营和证书项目)进行,而不依赖于传统的学术学位。类似地,许多 AI 相关职位可能会由那些通过非传统教育途径接受培训或技能提升的人来填补。来自非传统教育背景的候选人可以满足 AI 工作日益增长的需求,因此,必须确保建立适当的招聘路径和政策(例如美国人事管理局 (OPM) 2022 年 5 月关于基于技能的招聘的指导方针)来支持这一过程。

报告主要建议

建议:持续监测和评估 AI 对不同行业和国家的影响

美国应建立机制,监测和评估 AI 如何影响不同行业和社会。这些信息将有助于为制定 AI 政策提供最新的数据支持,从而使政策和资金能够与国家目标和优先事项保持一致。例如,可能会发现额外的研究对于解决某些问题或应对新的关注点具有价值。

建议:支持基础研究与开发,以保持在 AI 创新中的领导地位

大学中的基础科学研究推动着新发现的产生,并有可能带来新技术或改进的技术,同时培养和训练下一代研究人员。持续、战略性的联邦投资基础 AI 研究与开发,包括通过公私合作伙伴关系,将是保持美国在 AI 技术和应用领域领导地位的关键。当前,AI 研究和开发的绝大部分集中在少数几家大公司。因此,联邦投资对继续推动基础 AI 研究至关重要,而这最终将有助于商业发展和公众利益。

国会应继续支持国家科学基金会、能源部、国立卫生研究院以及其他为大学提供 AI 研究与开发(包括 STEM 领域的 AI 科学)资助的科学机构。此外,为确保美国继续在标准化方面保持全球领导地位,国会应继续投资于 AI 等关键和新兴技术的研究与开发,特别是在支撑技术标准的计量科学领域。

建议:增加大学研究与开发成果向市场的技术转移

大学将基础研究转化为商业化应用的过程充满困难。大学通常缺乏必要的生产手段来将初步的研究成果转化为可销售的产品。为了确保美国保持竞争力,必须加快从实验室研究到市场产品的转化速度。加强产业、政府和学术界之间的合作,有助于增加技术转移,激发创新,推动新产品和新工艺的出现,并扩大市场。

建议:促进公私合作伙伴关系在 AI 研究与开发中的作用

企业在美国的 AI 研究与开发中发挥着重要作用,并且通常会将关键的技术发展视为商业机密,以保持竞争优势。然而,AI 研究与开发和商业化的公私合作伙伴关系是我们国家创新生态系统的重要优势。美国应继续利用政府(包括国家实验室)、大学和私营部门之间长期以来的合作历史,共同寻找适当的平衡点,在开放研究和封闭研究之间找到合理的分界。这不仅可以避免联邦资金支持与行业中相似工作重复的研究,国会还应支持那些支持和扩大这些有效合作伙伴关系的举措。

建议:促进围绕 AI 评估和测试的研究与标准化

关于 AI 评估的科学正在迅速发展。某一用例中部署的 AI 评估方法可能不适用于其他场景。对 AI 系统的纯技术性评估可能无法解决所有挑战,例如 AI 系统使用中的社会技术性问题。上下文将对改进 AI 系统评估至关重要,特别是在特定行业或用例中部署时。为 AI 评估制定的自愿标准应考虑具体的 AI 用例。同样,现有的行业监管机构和组织应探索最适合其情境或情况的评估方案。国会应考虑支持改善和标准化评估的活动。

建议:促进基础设施和数据的发展,以支持 AI 研究

研究人员在 AI 研究与开发中需要大量的计算资源和数据资源。资源限制往往妨碍学术界、小型企业等在 AI 研究中的进展及对最先进 AI 系统的使用。建立共享的公共计算资源、数据资源、共享测试资源和软件基础设施将有助于促进美国的 AI 研究与开发。联邦科学机构应促进对其计算资源的访问,并提高其数据的可用性。联邦对开源软件库和工具包的投资,也将支持 AI 的发展。最后,国会应研究如何通过美国国家 AI 研究资源(NAIRR)提供这些迫切需要的 AI 资源。

建议:继续参与国际标准的制定

美国在标准制定方面是全球领导者,采用行业主导、自下而上的方法。然而,美国面临来自一些国家的挑战,这些国家可能将标准作为工具,用来为其国内产业争取竞争优势。联邦协调、跟踪联邦参与情况,并增加联邦在标准制定中的参与,可以帮助促进美国在国际标准组织中的领导地位。国会还应探索改进美国利益相关者参与国际标准制定的机制,例如为小型企业提供资助,以及解决在美国举办利益相关者会议的障碍。

建议:维护美国在标准制定中的方法

美国有着由多个行业利益相关者领导的标准制定历史。美国的方法能够防止低质量标准的产生,通过促进生动的辩论和竞争,确保技术上最有价值的标准得以胜出。破坏自下而上的、多方利益相关者参与的标准制定过程的政策,可能使美国公司处于不利地位,并促使我们的对手将美国公司排除在标准制定之外。联邦政策不应偏离这一方法,涉及自愿共识标准、贸易和战略竞争者的政策应当遵循这一原则。联邦政府还应与盟国合作,维护美国对国际标准组织的开放、规则导向的方法。

建议:将国家 AI 战略与更广泛的美国技术战略对接

AI 是几十年来最具变革性的技术之一,预计将在未来多年成为我们国家利益的核心部分。为了确保全政府范围内对 AI 发展的统一规划,AI 应当被纳入国家科学与技术战略以及类似的联邦战略中。

《国家 AI 计划法》正式化了 AI 计划的跨机构协调和战略规划。《芯片与科学法案》要求白宫科学技术政策办公室(OSTP)与国家科学技术委员会(NSTC)合作,每四年制定一份全面的国家科学与技术战略,确保研究与开发符合战略指令。AI 应当是这一国家战略的明确组成部分。

建议:探索如何利用 AI 加速跨学科的科学发现

AI 有潜力加速各个科学领域的研究。联邦科学机构正在大力投资基础 AI 研究及其在各个 STEM 领域的应用。凭借这些经验和专业知识,机构可以识别阻碍 AI 研究与开发的资源障碍,并提出解决方案,从而推动美国的 AI 研究。例如,机构可以研究并建议进一步的基础设施投资,以更好地利用 AI 促进科学发现。

结合 AI 与疾病预防、环境科学、制造业等领域的跨学科研究,能够为我们应对最复杂的挑战提供新的工具。联邦机构在历史上已通过合作解决这些问题并实现共同目标。资助所有非生物医学学科和多个 STEM 教育项目的 NSF,应在促进跨学科 AI 研究方面发挥重要作用。

建议:支持小型企业的 AI 研究与开发

小型企业是美国经济的支柱。因此,国会应继续支持小型企业进行和推动 AI 研究与开发的能力。像小型企业创新研究(SBIR)和小型企业技术转让(STTR)这样的项目由 10 多个联邦机构提供资助,其外部研究与开发预算分别超过 1 亿美元和 10 亿美元。这些项目旨在帮助小型企业商业化先进技术解决方案,最终推动产业、学术界和政府之间的技术转移。像国家科学基金会(NSF)和国防部(DOD)这样的机构应继续大力支持 AI 相关的 SBIR/STTR 资助,这些项目能够支持基础性和应用性的 AI 研究,增强国家安全和我们的研究与开发基础设施。

建议:鼓励与志同道合的盟国和伙伴开展国际合作研究与开发

全球性问题(如 AI 治理)促进了国际对话。虽然有些政府利用 AI 技术进行人口监控和控制,但美国有机会在负责任和伦理的 AI 设计、开发和部署方面引领世界。这将受益于在研究和标准化方面的国际合作。2019 年,经济合作与发展组织(OECD)发布的《人工智能建议》将投资 AI 研究与开发列为国家政策和国际合作的首要建议。美国已签署这一承诺,并将其作为国际合作的主要焦点之一。

美国应继续参与并领导这些国际论坛,展示对研究与开发合作的兴趣,并促进全球负责任的 AI 开发文化,尊重适用的国际法、个人隐私和人权。国会应支持联邦 AI 研究与开发的努力,增强公众对 AI 技术的信任,并与志同道合的国家分享共同的价值观和社会优先事项。相关活动可以包括美国科学特使计划及其他支持国际合作的联邦科学项目,这些项目将促进共享基础设施,并确保美国能够获得国际人才。

报告总结:

总体而言,报告提出了一系列重要的政策建议,涵盖了AI研发、技术转移、标准制定、国际合作等多个方面,旨在确保美国在全球AI技术的研发和应用中持续领先。这些建议不仅强调基础研究和技术创新,还重视社会影响评估、人才培养、国际合作等关键领域。通过实施这些建议,美国有望在推动AI技术发展的同时,确保其应用对社会和经济带来积极的影响,成为全球AI创新的引领者。

阅读报告全文,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

33a0b8a316b2eb842dbc379af054bcae.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

eef2ee3bae975587610e3598a18cdd78.jpeg

截止到11月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. Air Street Capital《2024 年人工智能现状报告》

  2. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  3. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  4. 文本到图像合成:十年回顾

  5. 《以人为中心的大型语言模型(LLM)研究综述》

  6. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  7. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告

  8. 理解世界还是预测未来?世界模型的综合综述

  9. Google Cloud CSA2024 AI 与安全状况调研报告

  10. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  11. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  12. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  13. 国际可再生能源署 IRENA2024 年全球气候行动报告

  14. Cell: 物理学和化学 、人工智能知识领域的融合

  15. 智次方 2025 中国 5G 产业全景图谱报告

  16. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  17. Deepmind:AI 加速科学创新发现的黄金时代报告

  18. PitchBookNVCA2024 年第三季度全球风险投资监测报告

  19. 德科 2024 年未来全球劳动力报告

  20. 高工咨询 2024 年协作机器人产业发展蓝皮书

  21. 国际能源署 IEA2024 年全球能源效率报告

  22. 基因慧基因行业蓝皮书 2024 - 2025

  23. 普华永道 PwC2024 全球经济犯罪调查英国报告 - 智对风险直面挑战

  24. 中国互联网协会 2024 面向未来网络的数字孪生城市场景应用白皮书

  25. 中移智库 2024 先进感知新技术及新应用白皮书

  26. 智次方研究院 2025 中国 AIoT 产业全景图谱报告

  27. 未来今日研究所:2024 技术趋势报告 - 人工智能篇

  28. 国际电联:迈向衡量数字经济的通用框架的路线图

  29. 联合国粮食与农业组织:2024 年世界粮食安全和营养状况

  30. 大语言模型综述

  31. 李飞飞等,AI 智能体:探索多模式交互的前景综述

  32. 哈尔滨工业大学 - ChatGPT 调研报告

  33. 2024《美国核部署战略报告》最新文件

  34. 清华大学:AIGC 发展研究 3.0 发布版 b 版

  35. OpenAI:2024 年 OpenAI o1 大模型技术报告

  36. Verizon2024 年世界支付安全报告

  37. 皇家学会哲学学报 从复杂系统角度评估人工智能风险

  38. 复旦大学 大模型 AI 代理的兴起和潜力:综述

  39. 经合组织 OECD2024 年气候行动监测报告

  40. Wevolver2024 年边缘人工智能现状报告 - 探索各行业边缘 AI 应用动态

  41. 2024 全球人形机器人产品数据库报告 - 人形机器人洞察研究 BTIResearch

  42. 《全球金融稳定报告》 把舵定航 不确定性、人工智能与金融稳定

  43. 瑞士洛桑联邦理工学院 《人工智能中的 - 创造力:进展与挑战》

  44. 《你所需要知道的理 - 论:人工智能、人类认知与决策》牛津大学最新 53 页报告

  45. 世界经济论坛 新兴技术时代的网络弹性导航:应对复杂挑战的协作解决方案 2024

  46. ADL 理特咨询 2024 汽车出行未来展望报告

  47. 2024 中国硬科技创新发展白皮书 - 开辟未来产业新赛道

  48. 科学时代的大语言模型中的人工智能

  49. Gartner2025 年重要战略技术趋势报告

  50. CBInsights2024 年第三季度全球人工智能投融资状况报告

  51. TrendHunter2025 年全球趋势报告 - 全行业顶级创新和变革趋势前瞻

  52. 天津大学 2024 大模型轻量化技术研究报告

  53. 欧洲海洋局 2024 导航未来报告将海洋置于更广泛的地球系统中第六版

  54. 美国安全与新兴技术中心 2024 AI 生成代码的网络安全风险研究报告

  55. 国际原子能机构 2024 年世界聚变展望报告

  56. 复旦大学 2024 大语言模型的能力边界与发展思考报告

  57. 安盛 AXA2024 年气候与生物多样性报告气候过渡计划路线图

  58. YouGov2024 美国公众对人工智能 AI 的态度调研报告

  59. 麦肯锡中国报告:《中国与世界》完整版

  60. 麦肯锡全球研究所 2024 下一代竞技场报告 - 重塑全球经济的 18 个新兴行业领域

  61. Project Sid,一个旨在模拟多智能体交互以研究 AI 文明的项目

  62. 德国研究与创新专家委员会 德国研究创新与科技成果报告

  63. 2024 年欧洲关键产业的科技重塑研究报告

  64. 智能体专题报告之二 - 智能体时代来临具身智能有望成为最佳载体

  65. ActivateConsulting 2025 年顶级技术和媒体发展趋势报告

  66. 兰德 全球灾难风险评估

  67. 斯坦福李飞飞 《AI agent 综述》Agent AI 开启多模态交互新纪元

  68. 中国联通研究院 2024 中国生成式人工智能应用与实践展望白皮书中文版

  69. 普华永道 2024 第五次工业革命研究报告迈向弹性可持续和以人为本的未来

  70. 大成 Dentsons2024 年全球智慧城市与互联社区智库年度报告

  71. TechUK2024 量子技术挑战与机遇并存构筑量子韧性的策略与实践研究报告

  72. Emakina 将塑造 2024 年的技术趋势报告

  73. 图灵奖得主 Yann LeCun《机器如何才能达到人类智能水平?》——Yann LeCun, 附 Slides 及视频

  74. 华为:2024 鸿蒙生态应用开发白皮书 V3.0(最新版)

  75. CASA:2023 第三代半导体产业发展报告

  76. 大型视觉语言模型中幻觉现象的综述

  77. IEA PVPS:2024 光伏应用趋势报告(英文版)

  78. ABI Research:82 个将会或不会在 2024 年发生的技术趋势白皮书

  79. 《美国反无人机系统未来趋势报告(2024 - 2029 年)》

  80. 《军事自主系统:未来之路》美空军

  81. 空间智能如何?牛津大学博士论文《深度具身智能体的空间推理与规划》

  82. 2024 低空经济场景白皮书 v1.0

  83. 战略与国际研究中心(CSIS)人类地月空间探索的总体状况研究报告(2024)

  84. Artificial Intelligence Review:人工智能与物理学相遇的综述

  85. 麦肯锡:全球难题,应对能源转型的现实问题

  86. 欧米伽理论,智能科学视野下的万物理论新探索(研究论文)

  87. Gartner 2025 年主要战略技术趋势研究报告

  88. 2024 人工智能国外大模型使用手册 + 中文大模型使用手册

  89. 详解光刻巨人 ASML 成功之奥妙 - 241015

  90. CB Insights:未来变革者:2025 年九大科技趋势研究报告

  91. 国际电信联盟 2023 - 2024 年联合国人工智能 AI 活动报告

  92. 《人工智能能力的人类系统集成测试和评估》最新 51 页,美国防部首席数字和人工智能办公室(CDAO)

  93. 2024 瑞典皇家科学院诺贝尔化学奖官方成果介绍报告

  94. MHP 2024 全球工业 4.0 晴雨表白皮书

  95. 世界经济论坛白皮书《AI 价值洞察:引导人工智能实现人类共同目标》

  96. 瑞典皇家科学院诺贝尔物理学奖科学背景报告资料

  97. AI 智能体的崛起:整合人工智能、区块链技术与量子计算 (研究报告,书)

  98. OpenAI o1 评估:AGI 的机遇和挑战(280 页)

  99. 世界知识产权组织:2024 年全球创新指数

  100. 美国白宫:国家近地天体防御策略与行动计划

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值