AI模拟细胞,走向全新虚拟生命,斯坦福团队呼吁是时候走出全新的一步了

21f08ec3590fb6358edaca16bde647df.jpeg

来源:ScienceAI

编辑:&

生命的诞生充满谜团。从第一个蛋白质分子出现,再到首个细胞完成了自己的分裂。现在的奇迹来自于一个个鲜活的细胞聚合体。

而现在,随着人工智能的发展,AI 虚拟细胞(AIVC)的创建也逐渐从无走到有。为了能更好的了解生命的运作方式与疾病的发病原理,AIVC 成为了当前热门且极有潜力的探索方向。

虽然,细胞的属性与行为无不在挑战物理与计算建模的极限,其中动态和适应系统所蕴含的复杂行为让整个细胞内部对于扰动的反应处于截然不同的反应状态。

现有的细胞模型通常是基于规则,并将有关潜在生物学机制的假设与来自观察数据的参数相结合。这通常依赖于明确定义的数学或计算方法,不同的复杂程度涵盖了细胞生物学的不同方面。

来自斯坦福大学的研究人员们呼吁,现在正是利用 AI 来创造第一个 AIVC 的时候。他们的声音以「How to build the virtual cell with artificial intelligence: Priorities and opportunities」为题,于 2024 年 12 月 12 日发布在《Cell》。

ea0668f1ffb6c7f460a07baa60c69b48.jpeg

对人类细胞进行建模可以被认为是生物学的圣杯。团队中,一位教授如此形容道。AI 提供了直接从数据中学习的能力,并超越假设和直觉来发现复杂生物系统的新兴特性。

AIVC

从实验上讲,测量技术吞吐量的指数级增长导致不同细胞和组织系统内和之间收集了大型且不断增长的参考数据集。在过去几年中,数据以及将这些测量与系统扰动耦合的能力每 6 个月翻一番。

在计算方面,AI 的并发进步增强了我们直接从数据中学习模式和过程的能力,而无需明确的规则或人工注释。

AI 中的最新建模方法提供了表示和推理工具,这些工具满足预测、生成和可查询的三重奏,是推进生物学研究和理解的关键实用程序。通过建立这些特性,现在有方法来开发一个完全由数据驱动的基于神经网络的 AIVC 表示。

它可以通过实现快节奏的计算机研究,以及计算方法和验证性湿实验室实验之间的强大桥梁来加速生物医学的研究。

95fd625a74a02fcde5f300cc75dd26a1.jpeg

图 1:AIVC 的功能。(图源:论文)

AIVC 的创建将开启生物学高保真模拟的新时代。将通过改变生成假设和确定优先级的方式,使生物学家能够跨越一个大大扩展的范围,更好地适应生物学的巨大尺度,从而赋予实验者和理论家权力。

尽管细胞模型可能并不总是直接识别机制关系,但他们可以被视为有效缩小机制假设并搜索空间的工具,从而加速发现细胞功能背后的潜在因素。

虚拟细胞路上的重大挑战

生物学中数量激增的基础模型执行了本视角中概述的虚拟单元功能的子集。生物学非常复杂:它在不同的尺度、不同的环境中运作,并用不同的模式进行测量。AIVC 模型必须在所有这些轴上保持一致。

AIVC 模型最终将根据大型基础模型通过为生物过程提供新的见解或加速科学过程来扩展我们对生物学的理解的能力进行评判。可操作的模型输出是设计经济实惠且高效的验证实验的高实用性,是初始实际使用的关键。

AIVC 的成功开发需要跨学科的合作,而生成反映人类多样性的大型数据集是非常艰难的。且先不说在使用 AIVC 的时候,方式方法是否合乎道德或者透明,亦或者数据是否会被伪造造成模型污染。

AIVC 协作开发的一个基本问题是应该收集哪些数据和模式以实现跨生物背景和规模的泛化。

这些数据需要涵盖不同物种、领域和模式的生物学广度,代表生命的异质性,同时保持足够的深度以区分真实信号和噪声。数据生成的一个关键方面是同时测量时间和物理尺度,同时还允许对系统进行扰动。

487eacb0a29aedfaa60c1f77739ea636.jpeg

图 2:AIVC 概述。(图源:论文)

AIVC 将是一个多尺度基础模型,它在每个物理尺度上学习生物实体的不同表示。每种表示都普遍适用于特定类别的生物实体。这种抽象允许虚拟单元在这个通用框架内无缝发展和整合新数据。无论是来自新模式还是来自分布式外源。

用于构建的 AI 技术

AIVC 将连接许多不同的神经网络架构。尽管这些架构可能不是专门为生物应用而设计的,但它们在与特定的生物模式和归纳偏差匹配时都得到了成功的结果。

扩散模型是一类生成式深度学习模型,最近因其能够在各个领域生成高质量、多样化的样本而受到关注。基于扩散模型架构,流匹配方法等方法也可以对随时间推移的分布演变进行建模。

扩散和流匹配模型学习和复制复杂分布的能力,结合流匹配方法的时间和空间建模功能,使其特别适合涉及生物系统典型高维复杂数据结构的任务。

AIVC 的起点是模拟中心法则的三种类型的分子:DNA、RNA 和蛋白质。这些都可以表示为字符序列核苷酸或氨基酸。此类序列数据特别适合最初为自然语言处理开发的 AI 方法,例如大型语言模型(LLM)。

下一个抽象级别对单个细胞状态进行建模。由于细胞功能以细胞中形成的分子相互作用和信号网络为基础,因此可以使用分子和其他特征的表示来构建细胞 UR,描述分子成分的组织和丰度。

从模型架构的角度来看,transformer 或利用卷积神经网络(CNN)的模型广泛适用于生物图像,跨多个成像通道进行建模,捕捉不同的生物特征。随着 AIVC 模型的复杂性增加,对细胞器和无膜隔室进行建模也至关重要。

从单细胞到多细胞的建模,需要走的路会更长,此处不做过多赘述。

值得乐观的前景

遗传学和基因组学界已经创建了许多大型参考数据集,而借由这些项目,可以使用大量参考数据来训练机器学习模型。虽然这些努力并未发展完善,但它们也促进了一项新的平行努力:创建细胞生物学的虚拟模拟,这是一种科学探究的新流程。

因此,AIVC 有可能彻底改变科学过程,从而在生物医学研究、个性化医学、药物发现、细胞工程和可编程生物学方面取得未来突破。作为虚拟实验室,其可以促进模拟实验数据与现实实验结果的无缝衔接。

团队坚定不移地倡导开放科学方法的作用,在开放科学方法中,科学界乐于共享数据、模型和基准,将发现和见解置于情境中,并营造持续改进的氛围。他们欢迎并鼓励各部门和领域的所有利益相关者参与这项工作。

在庞大的科学背景与共同目标的促成下,他们相信,人类正迈向科学发展的新方向。

原文链接:

https://www.cell.com/cell/fulltext/S0092-8674(24)01332-1

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

b83e83e3e5074b324c6851a764ef9fcf.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

6dcc666b4498b8be2dfe043c29b00472.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值