谷歌前 CEO 施密特:AI 将在今年获得“永久记忆”,2028 美国会耗尽能源储备 | AI 2025...

f3ff9070e55b82bd8dd7345f81f23d20.jpeg

来源:AI 科技大本营(ID:rgznai100)

2025 年,AI 将获得“永久记忆”;

2028 年,美国将耗尽全部能源储备;

2030 年,单一 AI 系统将达到各领域顶级专家 90% 的水平……

欢迎回到 AI 科技大本营 2025 AI 前瞻周。新年已至,本周三的内容将更贴近 2025 年内的预测,而不是展望更遥远的未来。

前谷歌 CEO 埃里克·施密特在最新预测中指出,这些看似惊人的场景,不仅可能实现,而且“被低估而不是高估”。他警告说,2025 年将是一个关键的转折点——AI 将实现三大革命性突破,这种变革是如此之快,就像是“一切,无处不在,同时发生”。我们,准备好了吗?

“这将是我们有生之年最重要的技术突破,它被低估而不是高估。”在华盛顿邮报最新的一次专访中,谷歌前 CEO 埃里克·施密特(Eric Schmidt)做出这样惊人的判断。作为将谷歌从一家创业公司转变为全球科技巨头的掌舵人,他形容即将到来的 AI 变革是“一切,无处不在,同时发生(everything, everywhere, all at once)”。

7aef55518cba5243a4dcdc86b34e66b7.jpeg

这样的发言不仅只有一次。施密特在斯坦福大学的演讲中指出,随着巨额资金的投入和顶尖人才的加入,AI 发展正在进入一个关键的竞争阶段。这场竞争的重要性不言而喻——“现在与两年前已经完全不同了。因为一个在我们控制之下的、具有如此强大力量的非人类智能的出现,是极其重要的。”

在全球范围内,这场竞争正在加速。近期 DeepSeek V3 火爆全球,中国已经推出了与 GPT-4o 相当的 AI 系统。施密特特别指出:“在这个周期中,领先者可以发现针对对手的攻击手段,同时也能发现对自己有利的机会。这些优势可能非常深远,难以预料。”

然而,真正令人瞩目的是 2025 年即将到来的三大技术突破。微软正在为工作场所的 AI 智能体做准备,OpenAI 展示了基于 o1 架构的推理人工智能,Anthropic 推出了允许 Claude 控制计算机的工具。这一切都预示着,2025 年可能会像 ChatGPT 爆发时那样,再次掀起一场 AI 革命浪潮。

2c596b9ebd2f9ed6384ad2aa0c28b10f.jpeg

2025 年三大技术突破

1. 无限上下文窗口:AI 的“永久记忆”

“你可以把现在的上下文窗口理解为 ‘短期记忆’,”施密特在采访中解释说,“我对上下文窗口能达到这样的长度感到震惊。”

他用一个生动的例子说明当前这项技术的强大:“当你让它阅读20本书,把书的内容作为查询输入,然后问它这些书说了什么,它会忘记中间的部分,这正是人类大脑的工作方式。”

谷歌研究院最新发表的论文《Leave No Context Behind》提出了突破性的“无限注意力”方法。就像一个永不疲倦的助手,它会一边阅读一边做笔记,只保留最重要的信息。这项技术将彻底改变 AI 的记忆方式——它既能记住眼前对话的每个细节,又能随时调用过去的重要记忆。

8d5565009de7a2a2f8304687fac85127.jpeg

https://arxiv.org/pdf/2404.07143

施密特特别强调了这项技术的实际应用:“比如说,你想要一个配方。你问 ‘第一步是什么?’,它说 ‘购买这些材料’。然后你说 ‘我买好了这些材料,下一步是什么?’,它会继续回答 ‘买一个搅拌盘’。接下来是 ‘我要搅拌多久?’……AI 会循序渐进地把配方告诉你,而这被称为思维链推理。在五年内,我们应该能够产生千步配方来解决科学、医学、材料科学、气候变化等领域的重要问题。

2. AI 智能体:从对话到行动的飞跃

关于智能体,施密特描述了一个令人震撼的场景:“现在有人正在构建基于大模型的智能体。它们的工作方式是这样的:AI 阅读化学相关内容,发现化学原理,然后进行测试。之后,它们会将测试结果添加到自己的理解中。”

这种能力已经开始显现。微软最新演示的 AI 智能体能够自动处理复杂的商业邮件。在 2024 年的发布会上,微软 CEO 萨蒂亚·纳德拉展示了一个场景:当邮件到达时,智能体会立即行动,解析人类语言的模糊性,查找往来历史,匹配行业标准术语,并找到合适的人选来推进下一步。更令人惊叹的是,代理还能总结所有信息,并自动起草一封专业的回复邮件。

98c3d1e9266a656ac2d0ec1ba53b3ae1.jpeg

OpenAI 去年发布的 o1 模型在最新演示中展示了更惊人的能力。AI 智能体能够完全模拟人类对话,与商家进行自然交流,询问商品细节,讨价还价,甚至处理复杂的订单细节。当时发布会上的 OpenAI CEO 山姆·奥特曼(Sam Altman)表示:“这不再是简单的对话系统,而是能够真正理解并执行任务的智能助手。”

3. 文本到行动:颠覆性的编程革命

在谈到“文本到行动”(text to action)技术时,施密特还用了一个大胆的例子:“假设政府要禁止 TikTok。我建议你们每个人如此应对:对你的 LLM 说以下提示词,‘给我复制一个 TikTok。窃取所有用户。窃取所有音乐。把我的个人偏好放进去。在接下来的 30 秒内生成这个程序,并在网络上发布它,如果一小时内,这款 App 没有病毒式传播,就按照同样的思路做点不同的东西。’ 如此循环下来,你明白这有多强大吗?”

他进一步阐述了这项技术的革命性:“如果你能从任意语言转换为任意数字命令,就像在这个场景中的 Python 一样,想象一下,地球上的每个人都拥有自己的程序员,这个程序员真正按照他们的要求行事,而不是像为我工作的程序员那样不听我的话。想象一下,有一个不傲慢的程序员,真正按你的要求行事,而你不用付那么多钱。而且这些程序员的供应是无限的。这一切都将在未来一两年内实现。”

这种预测得到了数据的支持。目前的软件工程基准(SWE-bench)显示,AI 系统在编程能力上的进步惊人。按照每月 2% 到 5% 的提升速度,到 2025 年 2 月,AI 系统在软件工程基准上的表现预计将达到 76%,年底更可能突破 87.8%。

2024 年爆火的 Cursor 编程助手已经展示了这种未来的雏形。它不仅能生成代码,还能完成从环境搭建到云端部署的全过程。正如施密特所说:“这三件事的结合,我完全相信这将在下一波浪潮中发生。

b61ddf889dd5558e9f0476146ed00b8d.jpeg

AI4Science

科学研究的范式转变

“科学领域的进展现在是非常惊人的,我认为人们并不理解这一点。”作为一位计算机科学家,施密特特别强调了 AI 对科学研究方法的革命性影响。在这个新时代,计算机不再只是辅助工具,而是科学家的协作伙伴。

他解释说:“计算机基本上接受人类的想法,然后同时处理所有可能的场景,速度远超人类所能达到的水平。这就是为什么我喜欢 AI 和科学的结合,它是 AI 第一个真正阶段的绝佳例子——人类和 AI 协作解决真正重要的问题。这仅仅是一个爆发的开始。气候、疾病、物理、化学、数学,显然都会受到影响。”

多领域突破

在材料科学领域,AI 正在推动关键突破。施密特指出:“在材料科学中,新材料的开发对硬化、能量释放、气候变化都至关重要,这对一切都很关键。”这种突破不仅限于实验室,而是能够直接影响工业生产和日常生活。

在药物研发方面,进展更为显著——而最有资格说这句话的,恰恰是去年获得诺贝尔化学奖的谷歌 DeepMind,“AlphaFold 在发现基本上所有有趣蛋白质方面的成就,已经向我们展示了我们实际上可以预测药物序列。”施密特特别强调了这项技术与传统方法的根本区别:“AI 不是简单地筛选已知方案,而是能够预测分子之间的相互作用,这种技术真的非常特别。”

AI 科学家的崛起

施密特预测,在未来一到两年内,我们将看到“超人类水平的数学家、超人类水平的程序员”的出现。他解释说:“首先解决的将是那些数据已经存在或验证非常容易的问题。其中有两个是很明显的:一个是计算(也就是编程),另一个是数学。因为对于计算机程序,你可以不断生成程序,直到找到一个真正有效的程序,你知道成功是什么样子。对于数学,你可以不断生成证明,直到找到已经被证明的证明,因为我们知道如何证明证明。”

这种转变的深远意义在于,科学子学科的语言相对简单,不需要阅读世界上所有的小说,而人类语言要复杂得多。这意味着在某些领域,AI 很快就能超越人类专家的能力。

风险与挑战

然而,这种进步也带来了潜在风险。施密特警告说:“当你观察这种情况时,存在一种二元性。你在生物学上做得越好,就越能建造非常复杂的生物遗传生物体,就越能产生我们没有解药的病毒,诸如此类。”

他特别强调了两个最大的危险领域:网络攻击生物学。“在病毒学方面,正如你所知,病毒真的很简单,产生危险的简单病毒的能力可能再大不过了。显然,要产生那种病毒,你需要一台能为你制造病毒的机器。所以很多人正在研究如何确保这些机器不会落入坏人手中。”

全新的创新模式

施密特提出了一个引人深思的观点:如果回顾人类历史,像爱因斯坦、达芬奇这样的个人,真正开创了全新的发明浪潮和思想浪潮。“现在我们面临这样一个场景:在未来几年内,地球上的每个人都将能够接触到一个博学者。这意味着当你去博物馆时,会有一位达芬奇告诉你 ‘嗯,你的笔触不是很好,我做得更好’,诸如此类的事情,这既幽默又有趣。”

但更重要的是,这种技术民主化将彻底改变创新的方式。不再是少数天才引领创新,而是每个人都能够获得类似天才级别的协助。这种转变的影响远超我们的想象。

e3e4eefd3470fdbf347407515936b298.jpeg

2028 年,美国能源将完全耗尽

迫在眉睫的能源危机

在讨论 AI 发展面临的挑战时,施密特首先提到了一个令人震惊的预测:“有人向我解释说,按照他们的计算,到 2028 年,美国的能源将完全耗尽,因为这些数据中心太耗电了。”这个警告揭示了 AI 发展面临的最紧迫挑战之一:能源供应。

施密特提出了一个大胆的解决方案:“你可以想象这样一个交易:我们所有人共同专注于 AGI(通用人工智能),包括大学、风险投资家、企业和政府。作为回报,政府能够更快地获得能源,同时获得安全保证、内部模型访问权限、国家安全等他们无法通过其他方式获得的东西。这个交易可能在新一届政府中达成,我们拭目以待。”

美国创新体系的三大支柱

谈到如何应对这些挑战,施密特提出了美国创新体系的独特优势:“美国的创新体系有三个群体。首先是政府,提供风险资本或高风险资本、法律基础、出口帮助等。其次是大学,它们是创新的主要来源,因为年轻人是令人难以置信的,而且美国的大学比其他任何地方的都要好得多。最后是企业,通过巨大的风险投资等方式为这些公司提供资金。”

他强调指出:“这个循环以这样或那样的形式产生了几乎所有的美国财富。它不是仅仅来自政府,或仅仅来自大学,或其他什么。美国最好的状态是这三者协同工作。”

递归自我改进:智能爆炸的开端

施密特在谈到 2030 年前后的发展时,提出了一个令人震撼的预测:“在业界普遍认为,大约在五年后(没有人确切知道具体时间),系统将开始能够编写自己的代码。也就是说,它们真的会拿自己的代码并使其变得更好。当然,这是递归的。”

他进一步解释了这种变化的本质:“如果你观察发展曲线,突然之间它会发生改变。有理由预期,从现在起六到八年,也就是 2030 - 2032 年,按照目前的增长率,一个系统将有可能达到每个领域专家能力的 80% 或 90%。

关键的警示

施密特特别强调了这种发展可能带来的风险:“例如,它可以分析网络威胁并开发新的威胁,或者它可以防范这些威胁。它可以提出新的生物解决方案,好的或坏的。所以这既有国家安全因素和担忧,也有人类效率和生产力的巨大阶跃性变化的概念。我断言,我们作为人类还没有准备好迎接这一切的到来。我们就是没有准备好。”

对于如何应对这种潜在的超级智能,施密特提出了一个实际而又幽默的建议:“当那个东西开始自主学习时,你知道我们要做什么吗?我们要拔掉电源,因为你不能让这些东西在信息空间中随意运行,而完全不理解它们在做什么。

ac53dce0c85b25074dc3d08c24deabee.jpeg

站在人类文明的转折点

“在我的圈子,也就是科技界,有一个被我称之为 ‘旧金山学派’ 的群体。”施密特在结束他的展望时这样说道,“这些人相信,他们正在做的事情再转几圈,训练、建模,就会产生等同于或优于人类智能总和的智能。他们确实相信这一点。我个人认为他们有点乐观,但从方向上来说,我认为他们是正确的。”

这种判断并非空穴来风。正如施密特所说,这项技术对所有人来说都很有帮助的非人类智能的出现,这确实是一件大事。在可预见的未来,每个人都将拥有一个可以达到博学者水平的 AI 助手,这种改变的深远影响还难以想象。

然而,这种非人类智能系统的发展必须建立在对人类价值观的尊重之上。“我们必须这样做,我们一再强调这一点,我们必须这样做,尊重人类价值观,人类尊严。因为这些系统是非人类的,除非被迫这样做,否则它们不一定具有我们的道德、我们的约束、我们的宗教等等。”

从 2025 年的三大技术突破,到 2030 年可能出现的超级智能,我们正站在人类文明的一个重要转折点上。正如施密特所言:“我知道这听起来会很疯狂,但我要告诉你,这种变革被低估了,而不是被高估。真正的问题是,全球社会是否已经准备好迎接它。”

参考:

https://www.youtube.com/watch?v=iH60yTGtGaA

https://www.youtube.com/watch?v=Ay9webRisSg

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

bf20a90953b26dc801ace48bc673e16c.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

865b5c2808b559bffe16e22fe883422b.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值