LLM时代,计算蛋白质科学进展如何?香港理工大学等发布系统性综述

图片

来源:ScienceAI

编辑:coisini

作为生命的基本构建单元,蛋白质在几乎所有基本生命活动中扮演着不可或缺的角色,例如新陈代谢、信号传导、免疫反应等。如下图所示,蛋白质遵循序列 - 结构 - 功能范式。

图片

图注:蛋白质遵循序列-结构-功能范式。(图源:论文)

随着科学探索的不断推进,破译蛋白质语言并应用蛋白质序列 - 结构 - 功能之间的信息流动规则面临更大的挑战。研究人员积极引入强大的 LLM 技术来推动计算蛋白质科学的发展,开发了蛋白质语言模型(pLMs),这些模型巧妙地掌握了蛋白质的基础知识,并能够有效地泛化以解决各种序列 - 结构 - 功能推理问题。

近期,为了帮助具有 AI 或生物学背景的研究人员快速了解相关进展并获得启发,来自香港理工大学等机构的研究团队对 LLM 技术支持下的计算蛋白质科学进行了系统性的综述。

图片

论文地址:https://arxiv.org/pdf/2501.10282

这篇综述首先概述了蛋白质建模中的生物学基础和数据概况,其次回顾了三类蛋白质语言模型(pLMs),这些模型能够理解氨基酸序列、识别结构和功能信息,并连接多种生物医学语言,接着该综述介绍了 pLMs 的利用和适应性,重点强调了 pLMs 在结构预测、功能预测和蛋白质设计中的重大影响。然后,该综述详细说明了 pLMs 在抗体设计、酶设计和药物靶点发现中的应用潜力,最后分享了这一快速发展领域的未来方向。

图片

图注:生物学基础与数据概况。(来源:论文)

下面是综述主要内容概览。

预训练蛋白质语言模型

该综述将现有蛋白质语言模型(pLMs)分类为基于序列的模型、结构与功能增强的模型以及多模态模型。

基于序列的 pLMs

通用 LLM 能够捕捉子词 token 之间的相互依赖关系,并深入理解文本的语法和语义。类似地,基于序列的 pLMs 能够捕捉氨基酸(AA)token 之间的相互依赖关系,提取有利的序列模式,并掌握隐含的结构和功能信息。基于序列的 pLMs 可以进一步分为基于单序列的模型和基于多序列的模型。前者通过相应的氨基酸序列描述每个蛋白质,后者则采用检索增强的思想,通过进化或合成中的多个相关序列来描述每个蛋白质。下表提供了基于序列的 pLMs 的全面总结,概述了每个 pLM 的输入数据、网络架构和预训练目标。

表注:基于序列的 pLMs。(来源:论文)

图片

结构与功能增强的 pLMs

基于序列的蛋白质语言模型通过大规模预训练展示了从蛋白质序列中捕捉隐含结构和功能语义的能力,而进一步整合显式知识可以在更全面的层次上增强其对蛋白质的理解。该综述介绍了构建结构与功能增强的 pLMs 的最新进展,分别解释了蛋白质结构和功能的数据形式,并介绍了相应的整合方法。

表注:结构与功能增强的 pLMs。(来源:论文)

图片

多模态 pLMs

上述蛋白质语言模型能够解析蛋白质序列并理解其结构和功能信息,其中一些模型整合了与蛋白质相关的文本描述,但它们的主要关注点仍然是围绕蛋白质的语义。该综述接下来介绍了在外在语言中表现出色的 pLMs,这些外在语言包括包含世界知识的自然语言、化学分子语言等。由于这些语言传达了极为多样化的语义,该综述将它们视为不同的模态。下表对多模态 pLMs 进行了总结。

表注:多模态 pLMs。(来源:论文)

图片

蛋白质语言模型的利用和适应

该综述通过考虑蛋白质结构预测、蛋白质功能预测和蛋白质设计中的待解决问题,总结了 pLMs 的利用和适应方法。

蛋白质结构预测

迄今为止,蛋白质数据库(Protein Data Bank)中仅收集了约二十万个通过实验确定的结构。以这种发展速度,要分析数亿个已测序但结构未知的天然蛋白质,将需要数百万个研究年。如果计算模型能够从氨基酸序列中准确推断出蛋白质的原子级三维结构,人类对蛋白质结构的理解进程将大大加快。

近年来,人工智能和计算能力的快速发展极大地推动了蛋白质结构预测的进步。诸如 AlphaFold2 和 RoseTTAFold 等突破性方法在预测蛋白质结构方面展现了接近实验精度的前所未有的水平。它们已成为科学家在数十分钟内获得可靠蛋白质结构的重要工具。

图片

图注:AlphaFold2 和 ESMFold 的工作流程概述。(来源:论文)

蛋白质功能预测

与明确界定的蛋白质序列和结构不同,蛋白质功能展现出多方面的特性,因为不同的蛋白质在广泛的生物系统中扮演着多样的生物学角色。

在 pLMs 出现之前,人工智能模型是针对各种蛋白质功能预测任务从头开始单独训练的。这种传统范式有一个严重的缺点:由于模型缺乏可迁移的蛋白质知识,预测性能往往不尽如人意,尤其是在数据稀缺的情况下。为了克服这一问题,pLMs 已成功应用于蛋白质功能预测。

图片

图注:基于pLMs的蛋白质功能预测的典型技术方案。(来源:论文)

蛋白质设计

为了创造出具有所需功能的新蛋白质,领域研究需要高效地探索广阔的蛋白质空间,以找到数量可控、合理、功能显著且多样化的蛋白质序列。根据是从现有蛋白质开始还是从头开始,蛋白质设计可以分为两大类:重新设计和从头设计。

蛋白质重新设计从现有蛋白质出发,探索蛋白质空间,旨在增强现有的功能特性。

图片

图注:蛋白质重新设计。(来源:论文)

与改造现有蛋白质不同,从头设计蛋白质旨在在没有参考序列的情况下提出全新功能性蛋白质。这是一项极具挑战性的任务,因为它要求模型在广阔的蛋白质空间中准确把握哪些序列和结构能够实现所需的功能。与此同时,从头设计蛋白质具有显著优势,例如揭示自然界中从未见过的功能,并提供对设计过程的完全控制。

通常,从头设计蛋白质通过逆转「序列 - 结构 - 功能」范式来实现:首先指定所需功能,然后设计能够执行该功能的结构,最后找到能够折叠成该结构的序列。

综述第五章介绍了 pLMs 的一些生物医学应用,包括抗体设计、酶设计和药物发现;第六章从数据稀缺、蛋白质相互作用建模、可解释性、计算与实验研究的结合、计算效率几个方面讨论了当前挑战和未来潜在研究方向。

感兴趣的读者可以阅读综述原文,了解更多研究内容。

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

9b0468527dd6b7d58519159366441a2a.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

9a4afcd8e513dece58794015c0cd19ae.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值