AES加密算法 ECB模式 ISO10126填充

本文介绍了AES加密的基本过程,并重点解析了ECB模式的工作原理,即分组加密和解密。同时,讨论了ISO10126填充方法,该方法用于确保原文长度符合分组大小的整数倍,填充字节中最后一个字节表示填充数量,其余填充随机数。文中提供了相关代码实现。
摘要由CSDN通过智能技术生成

AES加密的过程:
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
ECB模式:
分组加密,分组解密。
ISO10126:
这是填充方式的一种,旨将原文的长度边长组的大小的整数倍。
最后一个填充是填充的字节数,其它位随机数。

代码如下:

/*
 * 参考资料:
 * ISO10126:https://en.wikipedia.org/wiki/Padding_(cryptography)#ISO_10126
 * AES 算法过程:
 * https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
 * http://blog.csdn.net/lisonglisonglisong/article/details/41909813
 * ECB 模式实现思想:
 * http://blog.csdn.net/sevenlater/article/details/50317999
 */
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <time.h>
#include <string.h>


/*
 * GF(2^8)的过程
 */
uint8_t gmult(uint8_t a, uint8_t b) {

    uint8_t p = 0, i = 0, hbs = 0;

    for (i = 0; i < 8; i++) {
        if (b & 1) {
            p ^= a;
        }

        hbs = a & 0x80;
        a <<= 1;
        if (hbs) a ^= 0x1b; // 0000 0001 0001 1011
        b >>= 1;
    }

    return (uint8_t)p;
}

/*
 * 四字节的加法
 */
void coef_add(uint8_t a[], uint8_t b[], uint8_t d[]) {

    d[0] = a[0]^b[0];
    d[1] = a[1]^b[1];
    d[2] = a[2]^b[2];
    d[3] = a[3]^b[3];
}

/*
 * 四字节的乘法
 */
void coef_mult(uint8_t *a, uint8_t *b, uint8_t *d) {

    d[0] = gmult(a[0],b[0])^gmult(a[3],b[1])^gmult(a[2],b[2])^gmult(a[1],b[3]);
    d[1] = gmult(a[1],b[0])^gmult(a[0],b[1])^gmult(a[3],b[2])^gmult(a[2],b[3]);
    d[2] = gmult(a[2],b[0])^gmult(a[1],b[1])^gmult(a[0],b[2])^gmult(a[3],b[3]);
    d[3] = gmult(a[3],b[0])^gmult(a[2],b[1])^gmult(a[1],b[2])^gmult(a[0],b[3]);
}

/*
 * AES-128 分组大小为4
 */
int Nb = 4;

/*
 * AES-128 分组长度是4
 */
int Nk = 4;

/*
 * AES-128 轮数是10
 */
int Nr = 10;

/*
 * S-box 的表
 */
static uint8_t s_box[256] = {
    // 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
    0x51, 0xa3, 0x40, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值