Unique Paths

205 篇文章 0 订阅

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram 

below).The robot can only move either down or right at any point in time. The robot 

is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram

below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

到达某一格的路径数量等于它的上面和左边的路径数之和,结束条件是走到行或者列的边缘。

public int uniquePaths(int m, int n) {
    if(m==0 || n==0) return 0;
    if(m==1 || n==1) return 1;
    int[][] dp = new int[m][n];
    for(int i=0; i<m; i++)
        dp[i][0] = 1;
    for(int j=0; j<n; j++)
        dp[0][j] = 1;
    for(int i=1; i<m; i++){
        for(int j=1; j<n; j++)
            dp[i][j] = dp[i-1][j] + dp[i][j-1];
    }
    return dp[m-1][n-1];
}

还可以继续优化,用一个长度为 n 的一维数组即可,数组元素初始值都设为1,递推方

程为:dp[i] +=dp[i-1];也就是从第二行开始更新数组值,每次都存储当前行的值,到

最后一行计算完成后,返回 dp[n-1]即可。

public int uniquePaths(int m, int n) {
	if(m==0 || n==0) return 0;
	if(m==1 || n==1) return 1;
	int[] dp = new int[n];
	for(int i=0;i<n;i++)
		dp[i]=1;
	for(int i=1; i<m; ++i){  
		for(int j=1; j<n; ++j){ 
			dp[j]+=dp[j-1];  
	}  
	return dp[n-1];
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值