特斯拉车主抗议特斯拉刹车时僵硬,导致刹车时间过长,导致车祸,从大量视频讨论中看出:特斯拉的自动驾驶AI算法好像在昏暗的地下停车场路面上有一些“瑕疵”,它可能无法判断地面防滑漆的反光以及遭遇积水的复杂交互情况,这里有几个因素交互:
- 1. 停车场的灯光昏暗,不利于判断地面是积水还是地面漆反光。
- 2. 地面漆在遭遇一定湿度时,在对轮胎的反作用力方面非常复杂。
复杂系统的魔鬼出在其部件的相互作用上,这也就是还原方法不起作用的地方,试图通过分析刹车过程涉及的各个部件功能是无法获得满意结果,例如纠结在博世刹车系统,纠结在液压与真空等方式,汽车的刹车功能是由刹车AI算法、人工踩刹车的力度、博世刹车器、刹车助力系统等组成,逐个去追查这每个部件可能都没有问题,但是在一种特殊上下文场景,这些正常部件在这种场景下相互作用以后,产生的互动效果就不是简单这些部件简单的1+1=2。这也就是整体是大于个体之和的复杂性理论核心。
说白了,还原法是无法追查特斯拉刹车失败的根本原因的,我们的注意力应该集中在部件的相互作用上:
- 昏暗的地下室 +
- 容易反光的地面漆 +
- 地面漆的防滑性 +
- 地面有一点积水 +
- 地面从积水慢慢过渡到湿润直至干燥 +
- 特斯拉的自动驾驶主动干预算法 +
- 驾驶员踩刹车的犹豫(由于人眼误判和车辆实际反应的区别)+
- 博世刹车助力何时介入如何退出
以上复杂条件如果使用程序表达,将是非常复杂的if-else语句,如何保证这种复杂性正常运行,恐怕不是人工智能能够解决的,因为人工智能算法也被置于这样复杂系统内部,这取决于人类的智慧。
在AI机器学习自动化的四个等级一文中,人工智能与机器学习实现自动化的四个等级:
- L0. Human-only 人工
- L1. Shadow mode 影子模式
- L2. AI-Assisted AI辅助
- L3. Partial automation 部分自动化
- L4. Full automation 完全自动化
自动驾驶离实现L4级完全自动驾驶远得很,甚至无法实现,因为完全自动驾驶需要替代人类设计,将以上八大因素
考虑其中,这是无法通过穷尽去训练得,在逻辑上是矛盾的,根本矛盾是:完全自动驾驶自动化是算法高于人工决策的,那么人的生命是否被置于机器理性判断之下?生命完全由理性决定吗?这很可怕,这涉及AI道德伦理。
当然,如果驾驶处于L3级别,也有矛盾,人工决定和机器决定是处于相同地位,到底谁说了算?人工判断失误怎么办?机器因为没有道德感,它会认为:牺牲一个人换得十个人生存是合理吗?那么牺牲一百万人换得一千万人是合理吗?这恐怕是人类自身道德观问题,人类自己都没有就这些问题解决达成共识,何以让AI来判断?