[数学题] Sorting by Swapping pku 1674

Sorting by Swapping

Description

Given a permutation of numbers from 1 to n, we can always get the sequence 1, 2, 3, ..., n by swapping pairs of numbers. For example, if the initial sequence is 2, 3, 5, 4, 1, we can sort them in the following way:

2 3 5 4 1
1 3 5 4 2
1 3 2 4 5
1 2 3 4 5

Here three swaps have been used. The problem is, given a specific permutation, how many swaps we needs to take at least.

Input

The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each case contains two lines. The first line contains the integer n (1 <= n <= 10000), and the second line gives the initial permutation.

 

Output

For each test case, the output will be only one integer, which is the least number of swaps needed to get the sequence 1, 2, 3, ..., n from the initial permutation.

 

Sample Input

2
3
1 2 3
5
2 3 5 4 1

Sample Output

0
3
解析:
swap
很明显 2 3 5 1构成一个环 4 构成一个环
为了保证最少的次数,只要在每个环上做变化
假设r个环,每个环上的个数是h[i] ,则每个环需要swap h[i]-1次就可以
则总的次数是 (h[1]-1)+...+(h[r]-1)=(h[1]+...+h[r])-r 即 答案=总的数-环的个数
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值