Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
Have you met this question in a real interview?
思路: 一个树是bst 就是因为,左子树的值都小于 root.val , 右子树的值都大于 root.val
所以这个题是一个很好的递归题, 每次都判断 是否在最大值和最小值中间就行了。
易错点: 注意 由于刚开始用的 Integer.MAX_VALUE and Integer.MIN_VALUE; 对边界值的考虑不当, 因此最好转化成 long 来进行对比。
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isValidBST(TreeNode root) {
if(root == null)
return true;
long min = Long.MIN_VALUE;
long max = Long.MAX_VALUE;
return isBetween(root.left, min , root.val) && isBetween(root.right, root.val, max);
}
private boolean isBetween(TreeNode root ,long min, long max){
if(root == null)
return true;
long val = (long)root.val;
if( val > min && val < max){
return isBetween(root.left, min, val) && isBetween(root.right, val, max);
}else
return false;
}
}