[Usaco2007 Jan]Running贝茜的晨练计划

题目描述

奶牛们打算通过锻炼来培养自己的运动细胞,作为其中的一员,贝茜选择的
运动方式是每天进行N(1 <= N <= 10,000)分钟的晨跑。在每分钟的开始,贝茜
会选择下一分钟是用来跑步还是休息。

贝茜的体力限制了她跑步的距离。更具体地,如果贝茜选择在第i分钟内跑
步,她可以在这一分钟内跑D_i(1 <= D_i <= 1,000)米,并且她的疲劳度会增加
1。不过,无论何时贝茜的疲劳度都不能超过M(1 <= M <= 500)。如果贝茜选择
休息,那么她的疲劳度就会每分钟减少1,但她必须休息到疲劳度恢复到0为止。
在疲劳度为0时休息的话,疲劳度不会再变动。晨跑开始时,贝茜的疲劳度为0。

还有,在N分钟的锻炼结束时,贝茜的疲劳度也必须恢复到0,否则她将没有
足够的精力来对付这一整天中剩下的事情。

请你计算一下,贝茜最多能跑多少米。
 

输入输出格式

输入格式:

* 第1行: 2个用空格隔开的整数:N 和 M

* 第2..N+1行: 第i+1为1个整数:D_i
 

输出格式:

* 第1行: 输出1个整数,表示在满足所有限制条件的情况下,贝茜能跑的最大
距离

输入输出样例

输入样例#1:

5 2
5
3
4
2
10

输出样例#1:

9

提示信息

输出说明:

    贝茜在第1分钟内选择跑步(跑了5米),在第2分钟内休息,在第3分钟内跑
步(跑了4米),剩余的时间都用来休息。因为在晨跑结束时贝茜的疲劳度必须
为0,所以她不能在第5分钟内选择跑步。
 

算法

动态规划:设d[i][j]表示第i分钟,疲劳度为j时所能跑的最长距离。

初始状态:d[0][0]=0

状态转移方程:\left\{\begin{matrix} & d[i][j]=MAX (d[i-1][j-1]) +a[i] (1\leqslant i\leqslant n,1\leqslant j\leqslant m)& \\ & d[i][0]=MAX(d[i-j][j]) (1\leqslant i\leqslant n,1\leqslant j\leqslant m)& \end{matrix}\right.

根据题意,到达终点时疲劳值必须为0,所以最后的解

MAXN=MAX(d[i][j])(1\leqslant i\leqslant n,1\leqslant j\leqslant m )(i+j\leqslant n)

代码实现

#include<bits/stdc++.h>
using namespace std;
int n,m,d[10010][510],a[10010];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>a[i];
	memset(d,-0x3f,sizeof(d));
	d[0][0]=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++) 
		{
			d[i][j]=max(d[i][j],d[i-1][j-1]+a[i]);
			if(i-j>=0) d[i][0]=max(d[i][0],d[i-j][j]);
		}
		d[i][0]=max(d[i][0],d[i-1][0]);
	}
	int maxn=0;
	for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(i+j<=n) maxn=max(maxn,d[i][j]);
	cout<<maxn;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值