题目描述
奶牛们打算通过锻炼来培养自己的运动细胞,作为其中的一员,贝茜选择的
运动方式是每天进行N(1 <= N <= 10,000)分钟的晨跑。在每分钟的开始,贝茜
会选择下一分钟是用来跑步还是休息。
贝茜的体力限制了她跑步的距离。更具体地,如果贝茜选择在第i分钟内跑
步,她可以在这一分钟内跑D_i(1 <= D_i <= 1,000)米,并且她的疲劳度会增加
1。不过,无论何时贝茜的疲劳度都不能超过M(1 <= M <= 500)。如果贝茜选择
休息,那么她的疲劳度就会每分钟减少1,但她必须休息到疲劳度恢复到0为止。
在疲劳度为0时休息的话,疲劳度不会再变动。晨跑开始时,贝茜的疲劳度为0。
还有,在N分钟的锻炼结束时,贝茜的疲劳度也必须恢复到0,否则她将没有
足够的精力来对付这一整天中剩下的事情。
请你计算一下,贝茜最多能跑多少米。
输入输出格式
输入格式:
* 第1行: 2个用空格隔开的整数:N 和 M
* 第2..N+1行: 第i+1为1个整数:D_i
输出格式:
* 第1行: 输出1个整数,表示在满足所有限制条件的情况下,贝茜能跑的最大
距离
输入输出样例
输入样例#1:
5 2
5
3
4
2
10
输出样例#1:
9
提示信息
输出说明:
贝茜在第1分钟内选择跑步(跑了5米),在第2分钟内休息,在第3分钟内跑
步(跑了4米),剩余的时间都用来休息。因为在晨跑结束时贝茜的疲劳度必须
为0,所以她不能在第5分钟内选择跑步。
算法
动态规划:设d[i][j]表示第i分钟,疲劳度为j时所能跑的最长距离。
初始状态:d[0][0]=0
状态转移方程:
根据题意,到达终点时疲劳值必须为0,所以最后的解
代码实现
#include<bits/stdc++.h>
using namespace std;
int n,m,d[10010][510],a[10010];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
memset(d,-0x3f,sizeof(d));
d[0][0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
d[i][j]=max(d[i][j],d[i-1][j-1]+a[i]);
if(i-j>=0) d[i][0]=max(d[i][0],d[i-j][j]);
}
d[i][0]=max(d[i][0],d[i-1][0]);
}
int maxn=0;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(i+j<=n) maxn=max(maxn,d[i][j]);
cout<<maxn;
return 0;
}