机器学习-监督学习-cost function

1.引言

当我们的训练集如下图1所示,可以假设hypothesis函数如图2

θ0和θ1我们称为hθ(x)函数的2个参数,h是x的函数,所以有时候也记着h(x)

对于这个已有的hypothesis,我们需要什么方法来评估这个假设函数的好坏呢?

因此我们定义了一个叫"代价函数"cost function 来评估当前hθ(x)函数

2. 代价函数

cost function也叫作loss function,就是对hθ(x)函数进行评估的一个函数。

代价函数最重要的作用就是是用来度量预测错误的程度,通常来说,模型越准确,越接近真实,其cost function的值就越小。

cost function 通常用大写字母J表示,由于cost function的大小和hθ(x)的参数取值相关,不难想象,J是θ的函数,用Jθ表示。

线性回归中的cost function,通常用最小"平方差"来表示,也称为square loss,

有2个参数θ0和θ1的时候,可以定义cost function函数如下所以

这里x和y的右上角标i,表示training set中第i个数据的特征向量和实际值,加括号表示是第i个,而不是i次幂

由cost function定义可以知道,当hθ(x)对training set测试结果完全正确的时候,const function的值是0

因此我们的目标,就是尽量优化hθ(x),不断更改参数θ0 ~ θn 的值,使得Jθ的值最小,即上图中的Goal

3. 举例

为了简化模型,我们假设hθ(x)只有2个参数θ0和θ1,同时假设θ0 = 0

因此hθ(x) = θ1X

我们根据θ1的值等于 -1,0,1,2 可以画出cost function J(θ)的函数图像如下所示J(θ)。可以发现代价函数J(θ)是一个"凸函数",存在全局最小值。

不难发现,当θ1 =1 的时候training set能够和hθ(x) 完美拟合成一条直线,此时J(θ)值最小为0

类似的,当θ0不等于0的时候,此时hθ(x)有2个不为0的参数θ0和θ1,J(θ)的图像可能如下图所示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值