学习笔记:机器学习--2.2过拟合和正规化

这是机器学习的第二章第二节:过拟合(Overfitting)和正规化(Regularization) 通过这一节的学习我们将理解并学会如何对Linear regression和Logistic regression的Cost function进行正规化操作,使其达到更优异的效果(able to ...

2018-07-20 06:39:56

阅读数 155

评论数 1

学习笔记:机器学习--2.1逻辑回归模型

这是机器学习第二章第一节:Classification(分类) and Logistic regression model(逻辑回归模型) 第一章中介绍了机器学习中基于监督式学习(Supervised learning)下的线性回归(Linear regression)模型,根据一组连续的数据来...

2018-07-19 06:49:04

阅读数 97

评论数 1

学习笔记:机器学习--1.4正规方程求解\(\theta\)值

这是机器学习的第一章第四节:通过Normal Equation(正规方程)求解\(\theta\)在学习本节过程中,仍将提及到高等数学中矩阵的相关内容通过这一节的学习将会了解另一种计算\(\theta\)值的方法,即Normal Equation。在上一节中,我们学习了Gradient desce...

2018-07-16 04:19:12

阅读数 262

评论数 1

学习笔记:机器学习--1.3多变量的梯度下降法

这时机器学习的第一章第三节:Gradient descent for Multiple variables(多变量的梯度下降法)在学习本节过程中,将会涉及到高等数学中矩阵的相关知识通过这一节的学习将会了解第一节中函数1.1.1,函数1.1.2和第二节中公式1.2.1在多个自变量\(x\)与多个pa...

2018-07-14 11:25:18

阅读数 455

评论数 1

学习笔记:机器学习--1.2梯度下降法

这是机器学习的第一章第二节:Gradient descent(梯度下降法)通过这一节的学习将会了解到以下一个公式的含义:公式2.1:\theta_j := \theta_j - \alpha\frac{\partial }{\partial \theta_j}J(\theta_0,\theta_1...

2018-07-14 01:10:09

阅读数 89

评论数 0

学习笔记:机器学习--1.1代价函数

目前在学习Coursera的Machine Learning课程,决定做一份笔记以便记录学习情况。这是机器学习的第一章第一节:Cost Function(代价函数)通过这一节的学习将会了解到以下两个函数公式的含义:函数1-Hypothesis:\(h_\theta (x)=\theta _0+\t...

2018-07-13 08:08:25

阅读数 107

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭