【ICPC-282】poj 1948 Triangular Pastures(二维0/1背包)

点击打开链接poj 1948

思路: 二维0/1背包
分析:
1 题目要求从n个木棒里面选出m个组成一个三角形,使得三角形的面积最大
2 对于三角形来说知道了两条边和周长就可以求面积,按照0/1背包的思想dp[i][j][k]表示前i个木棒能否组成第一条边为长度j,第二条长度为k。如果dp[j-v[i]][k] 或dp[j][k-v[i]] 为true则dp[j][k]就为true
3 我们求出了所有可能的组合之和,就去枚举所有的边长的情况,然后求最大的面积

代码:


#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int N = 45;
const int MAXN = 2010;
int n , sum , v[N];
bool dp[MAXN][MAXN];

int solve(){
    memset(dp , false , sizeof(dp));
    dp[0][0] = 1;
    for(int i = 1 ; i <= n ; i++){
        for(int j = sum/2 ; j >= 0 ; j--){  // 最大的边长为周长的一半 
            for(int k = j ; k >= 0 ; k--){// 两条边存在大小的关系,所以直接让k <= j 即可
                if(j >= v[i] && dp[j-v[i]][k])
                    dp[j][k] = true;
                if(k >= v[i] && dp[j][k-v[i]])
                    dp[j][k] = true;
            }
        }
    }
    int ans;
    ans = -1;
    for(int j = 1 ; j <= sum/2 ; j++){
        for(int k = 1 ; k <= j ; k++){// 由于上面是j >= k,这里k枚举到j
            int t = sum-j-k;
            if(dp[j][k] && t > 0 && j+k > t && j+t > k && t+k > j){
               // 注意由于求最大的面积,这边求p注意,求tmp的时候才转化为int
               double p=(t+j+k)/2.0;  
               int tmp=(int)(sqrt(p*(p-t)*(p-j)*(p-k))*100);
               ans = max(ans , tmp); 
            }
        } 
    }
    return ans;
}

int main(){
    while(scanf("%d" , &n) != EOF){
        sum = 0;
        for(int i = 1 ; i <= n ; i++){
           scanf("%d" , &v[i]); 
           sum += v[i];
        }
        printf("%d\n" , solve()); 
    }
    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值