poj 1664放苹果 递归 DFS及等价问题

m个苹果放入n个盘子问题

  这个问题,看似是一个简单的排列组合问题,但是加上不同的限制条件,会演变成不同的问题,感觉很奇妙,就总结一下列举下来

问题一

  问题描述:把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问有多少种不同的分法?(注:5,1,1和1,1,5是同一种分法)

解题分析:

  设f(m,n)为m个苹果,n个盘子的放法数目,则先对n作讨论,

  • 当n>m:则必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即 if(n>m) f(m,n) = f(m,m)
  • 当n <= m:不同的放法可以分成两类:含有0的方案数,不含有0的方案数
  1. 含有0的方案数,即有至少一个盘子空着,即相当于 f(m,n)=f(m,n-1);
  2. 不含有0的方案数,即所有的盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即 f(m,n)=f(m-n,n).而总的放苹果的放法数目等于两者的和,即 f(m,n)=f(m,n-1)+f(m-n,n)

递归出口条件说明:

  • 当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
  • 当m==0(没有苹果可放)时,定义为1种放法;

用递归解法

int fun(int m, int n) {//m个苹果放在n个盘子中共有几种方法
    if(m==0 || n==1)
        return 1;
    if(n>m)
        return fun(m,m);
    else
        return fun(m,n-1)+fun(m-n,n);
}
 

用动态规划解法:

   int[][] mat=new int[m+1][n+1];
for(int i = 0; i <=m; i++) {
    mat[i][0]=0;
    mat[i][1]=1;
}
for(int i = 0; i <=n; i++) {
    mat[0][i]=1;
}
for (int i = 1; i <=m; i++) {
    for(int j = 1; j <=n; j++) {
        if(i<j)
            mat[i][j]=mat[i][i];
        else
            mat[i][j]=mat[i][j-1]+mat[i-j][j];
             
    }
}
return mat[m][n]; 

问题二

  问题描述:将整数N分成K个整数的和且每个数大于等于A小于等于B,求有多少种分法

int Dynamics(int n, int k, int min){ //将n分为k个整数,最小的大于等于min,最大的不超过B
    if(n < min) return 0;  //当剩下的比min小,则不符合要求,返回0
    if(k == 1) return 1;
    int sum = 0;
    for(int t = min; t <= B; t++)
    {
        sum += Dynamics(n-t, k-1, t);
    }
    return sum;
}

问题三

  m---->相同, n---->相同, 不能为空。将m个苹果放进n个盘子中,有多少种方法。同时注意例如1、2和2、1这两种方案是一种方案。

  思路,先把每个盘子都放一个苹果,这样问题就转化为:m-n个苹果放进n个盘子里,盘子允许空,即问题1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ 1321 排兵布阵问题可以使用 DFS 算法求解。 题目要求在一个 n x n 的棋盘上,置 k 个棋子,其中每行、每列都最多只能有一个棋子。我们可以使用 DFS 枚举每个棋子的位置,对于每个棋子,尝试将其置在每一行中未被占用的位置上,直到置了 k 个棋子。在 DFS 的过程中,需要记录每行和每列是否已经有棋子,以便在尝试置下一个棋子时进行判断。 以下是基本的 DFS 模板代码: ```python def dfs(row, cnt): global ans if cnt == k: ans += 1 return for i in range(row, n): for j in range(n): if row_used[i] or col_used[j] or board[i][j] == '.': continue row_used[i] = col_used[j] = True dfs(i + 1, cnt + 1) row_used[i] = col_used[j] = False n, k = map(int, input().split()) board = [input() for _ in range(n)] row_used = [False] * n col_used = [False] * n ans = 0 dfs(0, 0) print(ans) ``` 其中,row 代表当前尝试置棋子的行数,cnt 代表已经置的棋子数量。row_used 和 col_used 分别表示每行和每列是否已经有棋子,board 则表示棋盘的状态。在尝试置棋子时,需要排除掉无法置的位置,即已经有棋子的行和列,以及棋盘上标记为 '.' 的位置。当置了 k 个棋子时,即可计数一次方案数。注意,在回溯时需要将之前标记为已使用的行和列重新标记为未使用。 需要注意的是,在 Python 中,递归深度的默认限制为 1000,可能无法通过本题。可以通过以下代码来解除限制: ```python import sys sys.setrecursionlimit(100000) ``` 完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值