Hadoop是什么?
Hadoop是分布式的系统架构,是Apache基金会顶级金牌项目。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
Hadoop由什么组成?
Hadoop 2.0 = hdfs(存储) + mapreduce(计算) + yarn(资源管理)
分布式存储系统HDFS(Hadoop Distributed File System)
– 分布式存储系统
– 提供了 高可靠性、高扩展性和高吞吐率的数据存储服务
分布式计算框架 MapReduce
– 分布式计算框架(计算向数据移动)
– 具有 易于编程、高容错性和高扩展性等优点。
分布式资源管理框架YARN(Yet Another Resource Management)
– 负责集群资源的管理和调度
分布式文件存储系统HDFS ---- HDFS是Hadoop分布式文件存储系统
分布式存储系统HDFS的作用?
主要解决大数据的存储问题。经过多年的发展,HDFS的应用已经非常成熟非常多,如百度网盘 360云盘 腾讯微云 阿里云。
大数据好多技术框架都架构于这个文件存储系统之上的。
HDFS架构图
HDFS的功能模块及原理详解
1.HDFS 数据存储单元(block)
1.1 文件被切分成固定大小的数据块block
- 默认的数据块大小为128MB(hadoop2.0版本),可自定义配置
- 若文件大小不到128MB,则单独存成一个block
1.2 一个文件存储方式
- 按大小被分成若干个block,存储到不同节点上
- 默认情况下每个block都有3个副本
1.3 block大小和副本数通过client端上传文件时设置,文件上传后副本数可以变更,block size大小不可变
2.hdfs存储模型:字节
2.1 文件线性分割成块(block):偏移量 offset(byte)
2.2 block分散存储在集群节点中
2.3 单一文件block大小一致,文件与文件可以不一致
2.4 block可以设置副本数,副本分散在不同节点中
- 副本数不要超过节点数量
2.5 文件上传可以设置block大小和副本数
2.6 已上传的文件block副本数可以调整,大小不可变
2.7 只支持一次写入多次读取,同一时刻只有一个写入者
2.8 可以append追加数据
3.NameNode(简称NN)
3.1 NameNode主要功能
- 接收客户端的读/写服务
- 收集DataNode汇报的block列表信息
3.2 基于内存存储:不会和磁盘发生交换
- 只存在内存中
- 只会持久化到磁盘中,除了开启时从磁盘读取,其他时刻不会去磁盘中读取信息
3.3 NameNode保存metadata元数据信息
- 文件owership(归属)和permissions(权限)
- 文件大小,存储时间
- (block列表信息:block偏移量)
- block保存在那个DateNode位置信息(由DataNode启动时上报,不保存)
4.NameNode持久化
-
NameNode的metadata信息在启动后会加载到内存
-
metadata存储到磁盘文件名为“fsimage”
-
block的位置信息不会保存到fsimage
-
edits记录对metadata的操作日志
fsimage保存了最新的元数据检查点,类似快照
editslog保存自最新检查点后的元信息变化,从最新检查点后,hadoop将对每个文件的操作都保存在edits中。客户端修改文件的时候,先写到editslog,成功后才会更新内存中的metadata信息。
matedata = fsimage + editslog
5.DataNode(DN)
- 本地磁盘目录存储数据(block),文件形式
- 同时存储block的元数据信息文件
- 启动DN进程的时候会向NameNode汇报block信息
- 通过向NN发送心跳保持与其联系(3秒一次),如果NN10分钟没有收到DN的心跳,则认为其已经lost,并copy其上的block到其他DN
6.SecondaryNameNode(SNN)
SNN的主要工作是帮助NN合并editslog文件,减少NN启动时间,它不是NN的备份(但是可以做备份)
SNN执行合并时间和机制
- 根据配置文件设置的时间间隔fs.checkpoint.period默认3600秒
- 根据配置文件设置editslog大小fs.checkpoint.size规定edits文件的最大值默认是64MB
7.SecondaryNameNode合并流程
首先是NN中的Fsimage和edits文件通过网络拷贝,到达SNN服务器中,拷贝的同时,用户的实时在操作数据,那么NN中就会从新生成一个edits来记录用户的操作,而另一边的SNN将拷贝过来的edits和fsimage进行合并,合并之后就替换NN中的fsimage。之后NN根据fsimage进行操作(当然每隔一段时间就进行替换合并,循环)。当然新的edits与合并之后传输过来的fsimage会在下一次时间内又进行合并。
8.block的副本放置策略
-
第一个副本:放置在上传文件的DN;如果是集群外提交,则随机挑选一个磁盘不太满,cpu不太忙的节点
-
第二个副本:放置在与第一个副本不同机架的节点上
-
第三个副本:与第二个副本相同机架的不同节点
···
集群内提交:
9.HDFS读写流程
9.1写入文件流程
HDFS写流程:
client:
- 切分文件block
- 按block线性和NN获取DN列表(副本数)
- 验证DN列表后以更小的单位(packet)流式传输数据
- 各节点,两两通信确定可用
- block传输结束后:
- DN向NN汇报block信息
- DN向client汇报完成
- client向NN汇报完成
- 获取下一个block存放的DN列表
- 最终client汇报完成
- NN会在写流程更新文件状态
9.2读文件过程
HDFS读流程
client:
- 和NN获取一部分block副本位置列表
- 线性和DN获取block,最终合并为一个文件
- 在block副本列表中按距离择优选择
10.安全模式
- namenode启动的时候,首先将映像文件(fsimage)载入内存,并执行编辑日志(edits)中的各项操作
- 一旦在内存中成功建立文件系统元数据的映射,则创建一个新的fsimage文件(这个操作不需要SecondaryNameNode)和一个空的编辑日志
- 此刻namenode运行在安全模式。即namenode的文件系统对于客户端来说是只读的(显示目录,显示文件内容等。写、删除、重命名都会失败)
- 在此阶段namenode手机各个datanode的报告,当数据块达到最小副本数以上时,会被认为是“安全”的, 在一定比例(可设置)的数据块被确定为“安全”后,再过若干时间,安全模式结束
- 当检测到副本数不足的数据块时,该块会被复制直到达到最小副本数,系统中数据块的位置并不是由namenode维护的,而是以块列表形式存储在datanode中。
HDFS的优缺点
1.优点
高容错性
• 数据自动保存多个副本
• 副本丢失后,自动恢复
适合批处理
• 移动计算而非数据
• 数据位置暴露给计算框架(block偏移量)
适合大数据处理
• GB 、TB 、甚至PB 级数据
• 百万规模以上的文件数量
• 10K+ 节点
可构建在廉价机器上
• 通过多副本提高可靠性
• 提供了容错和恢复机制
2.缺点
低延迟高数据吞吐访问问题
比如说只支持秒级别反应,不支持毫秒级别
延迟与高吞吐率问题(吞吐量大但有限制于其延迟)
小文件存取
占用namenode大量内存
寻道时间超过读取时间
并发写入,文件随机修改
一个文件只有一个写入者
仅支持append
Hadoop伪分布式搭建
http://pjyn8dgy4.bkt.clouddn.com/Hadoop%E4%BC%AA%E5%88%86%E5%B8%83%E5%BC%8F%E6%90%AD%E5%BB%BA.txt