[APIO2014]序列分割

题目链接
题意:把一个长度为n的序列分割成k+1份。每次选中一个长度大于一的块,把它分成两份称为一次分割。每次分割的权值等于这一刀 左边新块权值和 与 右边新块权值和 的乘积。
求最大权值。 2 ≤ n ≤ 100000 , 1 ≤ k ≤ min ⁡ { n − 1 , 200 } 2 \leq n \leq 100000, 1 \leq k \leq \min\{n - 1, 200\} 2n100000,1kmin{n1,200}

考虑前三个子任务 裸的区间dp啊
f [ l e f t ] [ r i g h t ] [ k ] = max ⁡ j = l e f t r i g h t − 1 max ⁡ k k = 1 k − 1 f [ l e f t ] [ j ] [ k k ] + f [ j + 1 ] [ r i g h t ] [ k − k k ] + s u m ( l e f t , j ) ∗ s u m ( j + 1 , r i g h t ) f[left][right][k] = \max_{j = left}^{right - 1} \max_{kk = 1}^{k - 1} f[left][j][kk] + f[j + 1][right][k - kk] + sum(left, j) * sum(j + 1, right) f[left][right][k]=maxj=leftright1maxkk=1k1f[left][j][kk]+f[j+1][right][kkk]+sum(left,j)sum(j+1,right)

考虑一个序列 已经被分成了k+1份
那么分割的顺序其实是不影响结果的
因为结果 ∑ i = 1 k + 1 ∑ j = 1 k + 1 s u m ( 块 i ) ∗ s u m ( 块 j ) \sum_{i = 1}^{k + 1} \sum_{j = 1}^{k + 1} sum(块i) * sum(块j) i=1k+1j=1k+1sum(i)sum(j)
那么上面那个dp 维护的分割顺序就可以去掉了
则有 f [ i ] [ k ] = max ⁡ j = 1 i − 1 f [ j ] [ k − 1 ] + s u m ( 1 , j ) ∗ s u m ( j + 1 , i ) f[i][k] = \max_{j = 1}^{i - 1} f[j][k - 1] + sum(1, j) * sum(j + 1, i) f[i][k]=maxj=1i1f[j][k1]+sum(1,j)sum(j+1,i)
至于位置的话 就记录一下pre[i][k] = j就okk了
然鹅这个式子的时间复杂度还是 O ( n 2 k ) O(n^2k) O(n2k)
还要做一下斜率优化qvq
补一波斜率优化 传送门
看一下上面那个式子
f [ i ] [ k ] = max ⁡ j = 1 i − 1 f [ j ] [ k − 1 ] + s u m ( 1 , j ) ∗ s u m ( j + 1 , i ) f[i][k] = \max_{j = 1}^{i - 1} f[j][k - 1] + sum(1, j) * sum(j + 1, i) f[i][k]=j=1maxi1f[j][k1]+sum(1,j)sum(j+1,i)
= max ⁡ j = 1 i − 1 f [ j ] [ k − 1 ] + s u m [ j ] ∗ ( s u m [ i ] − s u m [ j ] ) = \max_{j = 1}^{i - 1} f[j][k - 1] + sum[j] * (sum[i] - sum[j]) =j=1maxi1f[j][k1]+sum[j](sum[i]sum[j])
随j改变的量是 s u m [ j ] ∗ s u m [ i ] , s u m [ j ] 2 , f [ j ] [ k − 1 ] sum[j] * sum[i], sum[j]^2, f[j][k - 1] sum[j]sum[i],sum[j]2,f[j][k1]
所以可移项得 − s u m [ i ] ∗ s u m [ j ] + f [ i ] = f [ j ] − s u m [ j ] 2 -sum[i]*sum[j] + f[i] = f[j] - sum[j]^2 sum[i]sum[j]+f[i]=f[j]sum[j]2
为了方便维护 把变量系数换成正的
s u m [ i ] ∗ s u m [ j ] − f [ i ] = − f [ j ] + s u m [ j ] 2 sum[i]*sum[j] - f[i] = -f[j] + sum[j]^2 sum[i]sum[j]f[i]=f[j]+sum[j]2
即过 P ( s u m [ j ] , − f [ j ] + s u m [ j ] 2 ) P(sum[j], -f[j] + sum[j]^2) P(sum[j],f[j]+sum[j]2)的最小截距
然后就okk啦

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e5 + 5;
const int Kmax = 205;
int n, pos, K;
long long f[N][2], sum[N];
int pre[N][Kmax];
int que[N], head, tail;
//P(sum[j], -f[j] + sum[j]^2)
//f[i][k] = = f[j][k - 1] + sum[j] * (sum[i] - sum[j])
inline double slope(int x, int y){
 if(sum[x] == sum[y]) return -1e9;
 return (sum[y] * sum[y] - sum[x] * sum[x]
 - f[y][pos ^ 1] + f[x][pos ^ 1])
 / (1.0 * (sum[y] - sum[x]));
 //死在这里了 如果直接调用X,Y会爆炸 
}
int main() {
 scanf("%d%d", &n, &K);
 for(int i = 1; i <= n; ++i){
  scanf("%lld", &sum[i]);
  sum[i] += sum[i - 1];
 }
 for(int k = 1; k <= K; ++k){
  pos = k & 1;
  head = tail = 1;
  for(int i = 1; i <= n; ++i){
   while(head < tail && slope(que[head], que[head + 1]) <= sum[i]) ++head;
   f[i][pos] = f[que[head]][pos ^ 1] + sum[que[head]] * (sum[i] - sum[que[head]]);
   pre[i][k] = que[head];
   while(head < tail && slope(que[tail - 1], que[tail]) >= slope(que[tail - 1], i)) --tail;
   que[++tail] = i; 
  }
 }
 printf("%lld\n", f[n][pos]);
 for(int i = pre[n][K], j = K; i; i = pre[i][--j]) printf("%d ", i);
 return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值