二叉树使用递归的方式创建:
首先输入数据,如果输入的数据是结束的数据就会返回上一层递归,进入到上一个节点并创建右孩子;如果输入数据符合创建数据的要求,就将改数据赋值给当前节点,并为当前节点的左孩子和右孩子开辟空间,创建左孩子节点;
int createTree(struct binaryTree *root)
{
if(root == NULL){
return 0;
}
int data;
scanf("%d",&data);
if(data == 0){
return 0;
}else{
root->data = data;
}
root->left = (struct binaryTree *)malloc(sizeof(struct binaryTree));
root->right = (struct binaryTree *)malloc(sizeof(struct binaryTree));
printf("please input left data\n");
if(createTree(root->left) == 0){
free(root->left);
root->left = NULL;
}
printf("please input right data\n");
if(createTree(root->right) == 0){
free(root->right);
root->right = NULL;
}
return 1;
}
二叉树递归遍历
通过改变打印节点数据的位置来实现先序,中序,后序递归遍历
void headPrint(struct binaryTree *root) //前序遍历
{
if(root != NULL){
printf("%d ",root->data);
headPrint(root->left);
headPrint(root->right);
}
}
void middlePrint(struct binaryTree *root) //中序遍历
{
if(root != NULL){
middlePrint(root->left);
printf("%d ",root->data);
middlePrint(root->right);
}
}
void endPrint(struct binaryTree * root) //后序遍历
{
if(root != NULL){
endPrint(root->left);
endPrint(root->right);
printf("%d ",root->data);
}
}
二叉树非递归遍历:
为了实现非递归遍历,用到栈;
void forPrint(struct binaryTree *root)
{
struct binaryTree *p = root; //创建一个用于遍历二叉树的临时节点;
struct binaryTree *stack[10]; //创建用于存放节点数据的结构体指针数组
int top = -1; //结构体指针数组的下标
while(p != NULL || top != -1){ //当临时节点不为空(遍历到的二叉树节点有数据),或者下标不为0(用于存放节点数据的结构体指针数组中有数据)
if(p != NULL){ //遍历到的当前节点不为空
stack[++top] = p; //存放入数组中
printf("%d ",p->data); //打印当前节点数据
p = p->left; //遍历到当前节点的左孩子
}else{
p = stack[top--]; //如果当前节点为空节点,主要返回到当前节点的父亲
p = p->right; //从父亲遍历到右孩子;
}
}
}
void miPrint(struct binaryTree *root) //中序遍历原理同先序遍历
{
struct binaryTree *p = root;
struct binaryTree *stack[10];
int top = -1;
while(p != NULL || top != -1){
if(p != NULL){
stack[++top] = p;
p = p->left;
}else{
p = stack[top--];
printf("%d ",p->data);
p = p->right;
}
}
}
后序遍历非递归实现,由于要考虑是哪一个孩子返回的根节点所以需要加入判断,这里使用数组,数组中每一个当做遍历次数的标记位
void postOrder(struct binaryTree *root)
{
int top =-1;
struct binaryTree *arr[10]; //结构体指针数组用于存放数据,当做栈使用
struct binaryTree *temp = root; //创建临时的结构体指针放置二叉树节点
int flag[10] = {0}; //首先创建用于判断遍历次数的标记位
while(temp != NULL || top != -1){
if(temp != NULL){
arr[++top] = temp; //节点入栈
flag[top] = 1; //当前入栈节点访问次数标记设置为1
temp = temp->left;
}else{ //左孩子为空
if(flag[top] == 1){ //判断栈顶的元素被访问的次数,如果访问的次数为1说明是从该节点的左孩子返回的,
temp = arr[top]; //获取当前节点
flag[top] = 2; //将其访问次数设置为2
temp = temp->right; //访问其右孩子
}else { //左孩子为空,并且当前的节点访问次数不是1,说明是从该节点的右孩子返回的该节点,并且该节点右孩子没有左孩子和右孩子
temp = arr[top--]; //由于没有左孩子和右孩子所以弹出该节点,栈顶指向右孩子的父亲节点
printf("%d ",temp->data); //打印该右孩子的值
temp = NULL; //已经层序遍历完当前子树的节点,所以需要将临时节点置空
}
}
}
}
层序遍历
使用数组的方式来存放节点,使用两个下标来进行遍历;
void cengPrint(struct binaryTree *root)
{
int index1 = 0; //首先定义两个下标用于遍历二叉树,index2用来不断遍历打印二叉树节点,index1用来动态添加index2的左右孩子到数组中;
int index2 = 0;
struct binaryTree *arr[10]; //创建结构体指针数组,用于存放节点数据
arr[index1++] = root; //首先利用第一个index设置数组第一个元素是传入的根节点
while(index1>index2){ //由于index2是用来遍历打印节点数据的,而index2是用来添加index2的左右孩子,所以比index1小
if(arr[index2] != NULL){ //index2表示当前遍历到的二叉树的节点
printf("%d ",arr[index2]->data); //打印当前遍历的节点数据
arr[index1++] = arr[index2]->left; //将当前遍历的左孩子利用index1加入到数组中
arr[index1++] = arr[index2]->right; //将当前遍历的右孩子利用index1加入到数组中
}
index2++; //遍历下一个节点
}
}
求二叉树深度:利用递归
int deepth(struct binaryTree *root)
{
if(root == NULL){
return 0;
}
int a = deepth(root->left); //看是否有左孩子
int b = deepth(root->right); //看是否有右孩子
if(a>b){ //左子树的深度比右子树深度深所以按照左子树的深度计算
return ++a;
}else{
return ++b;
}
}
整体代码
#include <stdio.h>
#include <stdlib.h>
struct binaryTree{
int data;
struct binaryTree *left;
struct binaryTree *right;
};
int createTree(struct binaryTree *root)
{
if(root == NULL){
return 0;
}
int data;
scanf("%d",&data);
if(data == 0){
return 0;
}else{
root->data = data;
}
root->left = (struct binaryTree *)malloc(sizeof(struct binaryTree));
root->right = (struct binaryTree *)malloc(sizeof(struct binaryTree));
printf("please input left data\n");
if(createTree(root->left) == 0){
free(root->left);
root->left = NULL;
}
printf("please input right data\n");
if(createTree(root->right) == 0){
free(root->right);
root->right = NULL;
}
return 1;
}
void headPrint(struct binaryTree *root)
{
if(root != NULL){
printf("%d ",root->data);
headPrint(root->left);
headPrint(root->right);
}
}
void middlePrint(struct binaryTree *root)
{
if(root != NULL){
middlePrint(root->left);
printf("%d ",root->data);
middlePrint(root->right);
}
}
void endPrint(struct binaryTree * root)
{
if(root != NULL){
endPrint(root->left);
endPrint(root->right);
printf("%d ",root->data);
}
}
void forPrint(struct binaryTree *root)
{
struct binaryTree *p = root;
struct binaryTree *stack[10];
int top = -1;
while(p != NULL || top != -1){
if(p != NULL){
stack[++top] = p;
printf("%d ",p->data);
p = p->left;
}else{
p = stack[top--];
p = p->right;
}
}
}
void miPrint(struct binaryTree *root)
{
struct binaryTree *p = root;
struct binaryTree *stack[10];
int top = -1;
while(p != NULL || top != -1){
if(p != NULL){
stack[++top] = p;
p = p->left;
}else{
p = stack[top--];
printf("%d ",p->data);
p = p->right;
}
}
}
void cengPrint(struct binaryTree *root)
{
int index1 = 0;
int index2 = 0;
struct binaryTree *arr[10];
arr[index1++] = root;
while(index1>index2){
if(arr[index2] != NULL){
printf("%d ",arr[index2]->data);
arr[index1++] = arr[index2]->left;
arr[index1++] = arr[index2]->right;
}
index2++;
}
}
int deepth(struct binaryTree *root)
{
if(root == NULL){
return 0;
}
int a = deepth(root->left);
int b = deepth(root->right);
if(a>b){
return ++a;
}else{
return ++b;
}
}
int main()
{
struct binaryTree *root = (struct binaryTree *)malloc(sizeof(struct binaryTree));
printf("plesae input root data\n");
createTree(root);
printf("head Print:\n");
headPrint(root);
printf("\n");
printf("forPrint\n");
forPrint(root);
printf("\n");
printf("middle Print:\n");
middlePrint(root);
printf("\n");
printf("mmiprint\n");
miPrint(root);
printf("\n");
printf("end Print:\n");
endPrint(root);
printf("\n");
printf("cengPrint\n");
cengPrint(root);
printf("\n");
printf("deepth is %d\n",deepth(root));
return 0;
}