数据结构——二叉树创建与遍历(递归与非递归)

二叉树使用递归的方式创建:
首先输入数据,如果输入的数据是结束的数据就会返回上一层递归,进入到上一个节点并创建右孩子;如果输入数据符合创建数据的要求,就将改数据赋值给当前节点,并为当前节点的左孩子和右孩子开辟空间,创建左孩子节点;

int createTree(struct binaryTree *root)
{
	if(root == NULL){
		return 0;
	}
	int data;
	scanf("%d",&data);

	if(data == 0){
		return 0;
	}else{
		root->data = data;
	}

	root->left = (struct binaryTree *)malloc(sizeof(struct binaryTree));
	root->right = (struct binaryTree *)malloc(sizeof(struct binaryTree));

	printf("please input left data\n");
	if(createTree(root->left) == 0){
		free(root->left);
		root->left = NULL;
	}
	printf("please input right data\n");
	if(createTree(root->right) == 0){
		free(root->right);
		root->right = NULL;
	}

	return 1;
}

二叉树递归遍历
通过改变打印节点数据的位置来实现先序,中序,后序递归遍历

void headPrint(struct binaryTree *root)            //前序遍历
{
	if(root != NULL){
		printf("%d ",root->data);
		headPrint(root->left);
		headPrint(root->right);
	}
}

void middlePrint(struct binaryTree *root)          //中序遍历
{
	if(root != NULL){
		middlePrint(root->left);
		printf("%d ",root->data);
		middlePrint(root->right);
	}
}
void endPrint(struct binaryTree * root)            //后序遍历
{
	if(root != NULL){
		endPrint(root->left);
		endPrint(root->right);
		printf("%d ",root->data);
	}
}

二叉树非递归遍历:
为了实现非递归遍历,用到栈;

void forPrint(struct binaryTree *root)     
{
	struct binaryTree *p = root;      //创建一个用于遍历二叉树的临时节点;
	struct binaryTree *stack[10];     //创建用于存放节点数据的结构体指针数组
	int top = -1;                     //结构体指针数组的下标
	while(p != NULL || top != -1){    //当临时节点不为空(遍历到的二叉树节点有数据),或者下标不为0(用于存放节点数据的结构体指针数组中有数据)
		if(p != NULL){                //遍历到的当前节点不为空
			stack[++top] = p;         //存放入数组中
			printf("%d ",p->data);    //打印当前节点数据
			p = p->left;              //遍历到当前节点的左孩子
		}else{
			p = stack[top--];         //如果当前节点为空节点,主要返回到当前节点的父亲
			p = p->right;             //从父亲遍历到右孩子;
		}
	}
}

void miPrint(struct binaryTree *root)    //中序遍历原理同先序遍历
{
        struct binaryTree *p = root;
        struct binaryTree *stack[10];
        int top = -1;
        while(p != NULL || top != -1){
                if(p != NULL){
                        stack[++top] = p;
                        p = p->left;
                }else{
                        p = stack[top--];
			printf("%d ",p->data);
			p = p->right;
                        
                }
        }
}

后序遍历非递归实现,由于要考虑是哪一个孩子返回的根节点所以需要加入判断,这里使用数组,数组中每一个当做遍历次数的标记位

void postOrder(struct binaryTree *root)
{
        int top =-1;
        struct binaryTree *arr[10];       //结构体指针数组用于存放数据,当做栈使用
        struct binaryTree *temp = root;  //创建临时的结构体指针放置二叉树节点
        int flag[10] = {0};             //首先创建用于判断遍历次数的标记位

        while(temp != NULL || top != -1){
                if(temp != NULL){
                        arr[++top] = temp;     //节点入栈
                        flag[top] = 1;         //当前入栈节点访问次数标记设置为1
                        temp = temp->left;  
                }else{                         //左孩子为空
                        if(flag[top] == 1){    //判断栈顶的元素被访问的次数,如果访问的次数为1说明是从该节点的左孩子返回的,
                                temp = arr[top];  //获取当前节点
                                flag[top] = 2;    //将其访问次数设置为2
                                temp = temp->right;  //访问其右孩子
                        }else {                     //左孩子为空,并且当前的节点访问次数不是1,说明是从该节点的右孩子返回的该节点,并且该节点右孩子没有左孩子和右孩子
                                temp = arr[top--];  //由于没有左孩子和右孩子所以弹出该节点,栈顶指向右孩子的父亲节点  
                                printf("%d ",temp->data);   //打印该右孩子的值
                                temp = NULL;				//已经层序遍历完当前子树的节点,所以需要将临时节点置空
                        }
                }
        }

}

层序遍历
使用数组的方式来存放节点,使用两个下标来进行遍历;

void cengPrint(struct binaryTree *root)
{
	int index1 = 0;                     //首先定义两个下标用于遍历二叉树,index2用来不断遍历打印二叉树节点,index1用来动态添加index2的左右孩子到数组中;
	int index2 = 0;

	struct binaryTree *arr[10];        //创建结构体指针数组,用于存放节点数据

	arr[index1++] = root;              //首先利用第一个index设置数组第一个元素是传入的根节点

	while(index1>index2){                     //由于index2是用来遍历打印节点数据的,而index2是用来添加index2的左右孩子,所以比index1小
		if(arr[index2] != NULL){              //index2表示当前遍历到的二叉树的节点
			printf("%d ",arr[index2]->data);  //打印当前遍历的节点数据
			arr[index1++] = arr[index2]->left;       //将当前遍历的左孩子利用index1加入到数组中
			arr[index1++] = arr[index2]->right;      //将当前遍历的右孩子利用index1加入到数组中
		}
		index2++;                                    //遍历下一个节点
	}
}

求二叉树深度:利用递归

int deepth(struct binaryTree *root)
{
        if(root == NULL){
                return 0;
        }

        int a = deepth(root->left);             //看是否有左孩子
        int b = deepth(root->right);            //看是否有右孩子

        if(a>b){                                //左子树的深度比右子树深度深所以按照左子树的深度计算
                return ++a;
        }else{   
                return ++b;
        }
}

整体代码

#include <stdio.h>
#include <stdlib.h>

struct binaryTree{
	int data;
	struct binaryTree *left;
	struct binaryTree *right;
};

int createTree(struct binaryTree *root)
{
	if(root == NULL){
		return 0;
	}
	int data;
	scanf("%d",&data);

	if(data == 0){
		return 0;
	}else{
		root->data = data;
	}

	root->left = (struct binaryTree *)malloc(sizeof(struct binaryTree));
	root->right = (struct binaryTree *)malloc(sizeof(struct binaryTree));

	printf("please input left data\n");
	if(createTree(root->left) == 0){
		free(root->left);
		root->left = NULL;
	}
	printf("please input right data\n");
	if(createTree(root->right) == 0){
		free(root->right);
		root->right = NULL;
	}

	return 1;
}

void headPrint(struct binaryTree *root)
{
	if(root != NULL){
		printf("%d ",root->data);
		headPrint(root->left);
		headPrint(root->right);
	}
}

void middlePrint(struct binaryTree *root)
{
	if(root != NULL){
		middlePrint(root->left);
		printf("%d ",root->data);
		middlePrint(root->right);
	}
}
void endPrint(struct binaryTree * root)
{
	if(root != NULL){
		endPrint(root->left);
		endPrint(root->right);
		printf("%d ",root->data);
	}
}

void forPrint(struct binaryTree *root)
{
	struct binaryTree *p = root;
	struct binaryTree *stack[10];
	int top = -1;
	while(p != NULL || top != -1){
		if(p != NULL){
			stack[++top] = p;
			printf("%d ",p->data);
			p = p->left;
		}else{
			p = stack[top--];
			p = p->right;
		}
	}
}

void miPrint(struct binaryTree *root)
{
        struct binaryTree *p = root;
        struct binaryTree *stack[10];
        int top = -1;
        while(p != NULL || top != -1){
                if(p != NULL){
                        stack[++top] = p;
                        p = p->left;
                }else{
                        p = stack[top--];
			printf("%d ",p->data);
			p = p->right;
                        
                }
        }
}


void cengPrint(struct binaryTree *root)
{
	int index1 = 0;
	int index2 = 0;

	struct binaryTree *arr[10];

	arr[index1++] = root;

	while(index1>index2){
		if(arr[index2] != NULL){
			printf("%d ",arr[index2]->data);
			arr[index1++] = arr[index2]->left;
			arr[index1++] = arr[index2]->right;
		}
		index2++;
	}
}

int deepth(struct binaryTree *root)
{
        if(root == NULL){
                return 0;
        }

        int a = deepth(root->left);
        int b = deepth(root->right);

        if(a>b){
                return ++a;
        }else{
                return ++b;
        }
}

int main()
{
	struct binaryTree *root = (struct binaryTree *)malloc(sizeof(struct binaryTree));
	printf("plesae input root data\n");
	createTree(root);

	printf("head Print:\n");
	headPrint(root);
	printf("\n");


	printf("forPrint\n");
	forPrint(root);
	printf("\n");

	printf("middle Print:\n");
        middlePrint(root);
        printf("\n");

	printf("mmiprint\n");
	miPrint(root);
	printf("\n");

	printf("end Print:\n");
        endPrint(root);
        printf("\n");

	printf("cengPrint\n");
	cengPrint(root);
	printf("\n");

	printf("deepth is %d\n",deepth(root));
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值