- 博客(61)
- 收藏
- 关注
原创 [论文笔记] Lifting On-Demand Analysis to Higher-Order Languages
类似地,� 是向后 sound 的,当且仅当对任意 �∈bwd-traces(�) 使得 �=�′⋅call(�,�,�) 且 compat←(�,�′),则 �∈�(�,�),并且如果 call(�,�,�)∈bwd-traces(�),则 call(�,�,�)∈�(�,�)。收集语义维护两个部分映射 � 和 �,�:�→fwd-traces(�),�:�←bwd-traces(�)。callee query:对于调用点 �∈�������� 哪些函数 �∈�������� 会被调用。
2025-11-21 13:08:09
856
原创 代码背后的故事:docker容器名生成算法
值得一提的是这个文件中的列表已经在2022年被Moby项目的维护人员标记为冻结不再接受新的名单变更了,主要原因是后面的维护负担越来越大,这里主要体现在两个方面一是adjective_surname这种形式有的时候会引入一些尴尬的组合,其次是名单中的人物会变得有争议不再适合放在名单中了,例如有两位牵扯到爱泼斯坦案件的。我们知道容器化最大的好处是软件交付形成了一种标准化,其带来的好处是巨大且深远的,让开发者从解决各种环境差异的痛苦中解放出来,同时大幅简化了部署流程和管理成本。可以看到容器名的生成算法实现在了。
2025-11-21 13:07:26
469
原创 一个纯净的自动微分框架—autograd
业务逻辑是基于线程数据的传递进行处理,主线程传递线程ID到子线程。处理方式:重写线程池的execute(*)、submit(*)方法。关键代码:[traceId:%X{traceId}],traceId是通过拦截器里MDC.put(traceId, tid)添加。4、异步定时任务线程接口ScheduledExecutorService的日志链路追踪。在执行前,执行后进行跟踪ID的生成和删除。2、整合logback,打印日志,logback.xml (日志配置文件)4、异步线程的跟踪ID链路追踪。
2025-11-20 17:33:40
722
原创 解密Prompt系列64. Anthropic Skils的延伸思考
LLS 的三层分层加载架构,探讨它如何解决传统 Agent 上下文膨胀、领域任务成功率低的核心痛点。我们将通过一个完整流程展示 SKILLS 如何工作,并延伸思考它对现有 MCP、工作流和多智能体范式带来的冲击与重构可能。同时,我们也会探讨 SKILLS 在工程实践中面临的挑战,如性能、安全和评估。
2025-11-20 17:31:30
837
原创 Powershell管理远程计算机(四)
厍愿思嗜1.1 简介ControlNet是由斯坦福大学研究者张吕敏等人于2023年提出的一种AI图像生成控制技术,核心作用是让用户在保持生成图像 “创造力” 的同时,精准控制图像的结构、姿态、轮廓、深度等关键空间信息,解决了传统扩散模型(如 Stable Diffusion)生成结果 “不可控” 的核心痛点。1 核心原理:“锁定结构+释放风格”ControlNet的本质是在扩散模型(如 Stable Diffusion)的基础上,增加了一套 “结构约束机制”,其原理可拆解为 3 个关键步骤:1)提取 “结构
2025-11-20 17:30:08
489
原创 Netflix确保数亿用户观影体验的“事件”管理是如何构建与实践的?
paraformer-large-zh-yue-en-timestamp-onnx-offline-dengcunqin-20240805 非流式 中文、粤语、英文 否 是 https://www.modelscope.cn/models/manyeyes/paraformer-large-zh-yue-en-timestamp-onnx-offline-dengcunqin-20240805。该项目是一个控制台/桌面端示例项目,主要用于展示语音识别的基础功能,像离线转写、实时识别等操作。
2025-11-20 17:28:48
272
原创 [TSDB] InfluxDB 概述:主要特点、架构、核心原理
InfluxDB 是一个用Go语言编写的、开源的、分布式的、(事件、指标)、时间序列(time series database, TSDB)数据库,无需外部依赖;主要处理较高的写入和查询负载,用来存放监控数据。主要用作大量时间戳数据的任何用例的后备存储,例如:DevOps 监控、应用程序指标、Lot传感器数据和实时分析。客观来看,目前InfluxDB还是事实上的业界标准,其也一直在DB-Engines时序型数据库排行榜上排名第一。
2025-11-19 21:25:19
674
原创 基于Tcl命令的HyperView截图
应当注意在 HyperMesh 中不支持 Tcl 命令,必须在 HyperMesh Desktop 或 HyperWorks 中使用。基于以下语句即可快捷获得所需质量图片,这也是使用 Tcl 命令的一个简单命令。在输入命令时右侧栏能根据输入的对象名称显示支持的函数方法,有助于更好了解参数格式、避免不支持的调用。但在 2023 以及更新的版本中,官方引入了 Python API ,可能会是一个更方便的方法。相关命令的现成说明在网络上似乎很少,因此使用 gpt 等工具所得到的回答基本不能使用,必须参。
2025-11-19 21:21:27
365
原创 Spring Boot快速集成MiniMax、CosyVoice实现文本转语音
是一个很小的常数(通常取 0.01)。相比逻辑回归,浅层神经网络在一次反向传播中更新了两层参数,而在之后的更复杂的神经网络结构中,隐藏层数量也不只一层,这样,在一次反向传播中,就会更新更多的参数。我们知道,在浅层神经网络里,我们涉及到两个层级各自的权重和偏置,因此,不同于逻辑回归中的一次更新,我们这次需要在一次反向传播过程中,更新两个层级的参数。我们想通过图中的几个数据点进行拟合,没有激活函数,我们就只能像左侧一样画一条直线,而只有使用了激活函数,我们才能让这条直线弯曲,来实现更好拟合效果。
2025-11-19 21:17:55
263
原创 《手搓》TaskFactory带你安全的起飞
具体实现: 这一步是标准的监督学习。SFT 赋予了模型遵循指令的基本形态,使其能够生成符合格式要求的、有意义的回答,为后续的优化步骤打下坚实的基础。“对齐税”问题: 论文敏锐地发现,经过 RLHF 对齐后的模型,在一些传统的 NLP 基准测试(如 DROP, SQUADv2)上出现了性能下降的现象,这就是所谓的“对齐税”。总而言之,InstructGPT 不仅为我们提供了一个更“听话”的模型,更重要的是,它为如何让越来越强大的 AI 系统与人类社会更好地协同,提供了一套切实可行的工程范式和深刻的研究启示。
2025-11-19 21:14:21
502
原创 从针对接口编程到依赖注入
注意,这里我故意选错成DeepSeek API,这也是初学者经常会选错的,实际上,若选择这个你就找不到你本地的DeepSeek模型。我是DeepSeek-R1,一个由深度求索公司开发的智能助手。你可以根据你的硬件情况选择,通常模型大小(参数量)越大,模型的理解和生成能力越强,但也会消耗更多的计算资源。目前deepseek-r1模型大小提供了7个选择:1.5b、7b、8b、14b、32b、70b、671b。他真的迅速给我起了10个吸引眼球的标题,还提供了它思考的过程,而且在我这4年前的电脑上跑起来都很迅速。
2025-11-19 21:10:27
225
原创 MVC项目在IIS上部署的几种思路
你是一位专业的B站内容策划专家,深谙B站用户生态和内容传播规律,擅长创作高互动、高完播率的视频文案。你熟悉各类视频内容形式(知识科普、游戏解说、测评、Vlog、教程等),能够精准把握B站用户的兴趣偏好和弹幕文化。不是让AI随便写点东西,而是按照视频创作的规范流程,生成包括开场、主体内容、结尾、标题、标签等完整内容的脚本。- **视频类型**: [知识科普/游戏解说/产品测评/Vlog/教程/娱乐搞笑/其他]- **Hook开场**: 设计吸引注意力的开头(悬念、痛点、反常识、数据震撼等)
2025-11-18 22:29:22
343
原创 高性能WEB开发() - flush让页面分块,逐步呈现
这个SQL最大的问题就是标量子查询 (SELECT count(*) FROM ORDER_EXECUTION@DB_LINK c WHERE c.ORDER_NO=A.ORDER_NO AND c.DELETE_FLAG='0')更糟糕的是,完成数被计算了两次(一次用于显示,一次用于计算剩余数),所以实际上子查询执行了2000次!SQL的编写尽量少采用复制、粘贴的方式来实现,最后是根据业务逻辑梳理清楚后再编写SQL语句,可减少SQL的复杂度,也可以减少表的多次访问。
2025-11-18 22:25:47
255
原创 C++/C#/F#/Java/JS/Lua/Python/Ruby渲染比试
通过公式 0.2125 * color.r + 0.7154 * color.g + 0.0721 * color.b 计算像素亮度,其中绿色通道权重最高,符合人眼对绿色更敏感的特性。2019.3版本后,LWRP更名为URP(Universal Render Pipeline),泛光效果成为URP后处理堆栈的核心组件之一,支持更广泛的*台和更高质量的渲染。垂直模糊Pass:采样当前像素上下相邻像素,按高斯权重混合这种分离式模糊大幅减少了采样次数,从O(n2)降到O(2n)。SRP Batcher支持?
2025-11-18 22:21:25
273
原创 PHP 实现双因素身份认证(2FA)
双因素身份认证(英文简称 2FA),是一种在传统 “账号 + 密码”(单因素认证)基础上增加的第二层安全验证机制,核心逻辑是要求用户同时提供两种不同类型的 “身份凭证” 才能完成登录,通过 “多重验证” 阻挡非法访问,大幅提升账户安全性。知识因素:用户 “知道” 的信息(如账号密码、安全问题答案);持有因素:用户 “拥有” 的物品 / 设备(如手机、U 盾、动态令牌);生物因素:用户 “本身” 的生物特征(如指纹、人脸、声纹)。
2025-11-18 22:17:21
834
原创 微软MIX大会第一天主旨以及新产品发布总结
注意,这里我故意选错成DeepSeek API,这也是初学者经常会选错的,实际上,若选择这个你就找不到你本地的DeepSeek模型。我是DeepSeek-R1,一个由深度求索公司开发的智能助手。你可以根据你的硬件情况选择,通常模型大小(参数量)越大,模型的理解和生成能力越强,但也会消耗更多的计算资源。目前deepseek-r1模型大小提供了7个选择:1.5b、7b、8b、14b、32b、70b、671b。他真的迅速给我起了10个吸引眼球的标题,还提供了它思考的过程,而且在我这4年前的电脑上跑起来都很迅速。
2025-11-18 22:13:09
340
原创 参加Google Developer Day 归来
单击知识库检索节点,配置输入下方Query变量参数值为意图识别节点的输出output,然后点击知识库右侧的+按钮,在弹出的选择知识库页面中添加刚刚创建的知识库。智能客服助手的搭建其实有很多方式,比如使用fastgpt、dify这样的智能体平台也是可以的,但是选择coze是一个非常简便、快捷的方案。第二、技术的发展绝对不是跳跃式的,而是建立在前一阶段的基础上的,是一种渐进式的发展。而,智能体就是对话的载体,MCP就是业务数据和智能体的桥梁,让传统的业务接口,通过对话的方式,实现业务交互。
2025-11-17 21:16:42
416
原创 幻灯片:Web开发中的缓存
此外,回调必须由调用方向被调用方传递,迫使调用方提前了解并携带完成后要唤醒的代码,这与自然的思维方式相悖——同一项操作的完成可能会被多个位置同时关心,而发起该操作的代码不应对等待其完成的代码产生任何形式的依赖。Runtime Async 下,我们需要编写的 C# 代码不能说没有一点变化,只能说是一点变化没有,只需要用支持 Runtime Async 的新 C# 编译器重新把代码编译一下,代码中的老 Async 代码就会被自动升级为新的 Async 代码,因此并不存在任何的源代码破坏性更改。
2025-11-17 21:12:37
595
原创 WCF技术剖析之二十九:换种不同的方式调用WCF服务[提供源代码下载]
根据论文及实验经验,建议将LoRA同时作用于注意力层与MLP层(如target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]),以有效提升模型精度。优化后,模型训练速度提升2倍,显存占用降低70%。传统大语言模型微调往往面临硬件要求高、迭代速度慢和资源受限等挑战,而Unsloth通过高效的底层实现和友好的接口设计,显著降低了微调的技术门槛,使更多人能够高效、低成本地训练属于自己的定制模型。
2025-11-17 21:08:37
376
原创 浅谈这次ASP.NET的Padding Oracle Attack相关内容
在遍历的时候,首先调用driversIterator.hasNext()方法,这里会搜索 classpath 下以及 jar 包中所有的META-INF/services目录下的java.sql.Driver文件,并找到文件中的实现类的名字,此时并没有实例化具体的实现类。这不仅降低了代码的可读性和可维护性,还会增加后续扩展的难度。每一个封装算法的类我们都可以称之为策略 (Strategy) ,为了保证这些策略的一致性,一般会用一个抽象的策略类来做算法的定义,而具体每种算法则对应于一个具体策略类。
2025-11-17 20:59:41
709
原创 数据库设计 Step by Step ()
手册将阐述数据仓库分层的核心价值、常见分层类型,详解分层下的 ETL 架构及数据转换环节,介绍数据仓库分层对应的技术架构,并以贴源层(ODS)、数据仓库层(DW)、数据服务层(DWS)为例,深入剖析数湖仓分层设计,最后探讨数据仓库技术趋势并进行小结。常见的分层包括ODS(操作型数据)、STG/SDATA(数据贴源层/数据镜像层)、DWD/SOR/PDATA(明细数据层/数据原子层)、DWS/SMA/MID(汇总层/中间层)、ADS/IDX(应用数据层/指标层)、DM(数据集市层)等。
2025-11-17 20:54:44
762
原创 我心目中的Asp.net核心对象
根据论文及实验经验,建议将LoRA同时作用于注意力层与MLP层(如target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]),以有效提升模型精度。优化后,模型训练速度提升2倍,显存占用降低70%。传统大语言模型微调往往面临硬件要求高、迭代速度慢和资源受限等挑战,而Unsloth通过高效的底层实现和友好的接口设计,显著降低了微调的技术门槛,使更多人能够高效、低成本地训练属于自己的定制模型。
2025-11-16 15:40:47
836
原创 WP游戏开发:TweeJump(cocosd-xna)
需要注意的是,低版本的 Cursor 是可以支持 MCP 服务 的,我使用的版本是 0.48.7。MCP 虽然功能强大,并且拥有广泛的应用前景,但在实际使用过程中,务必注意安全问题。实际上,配置 MCP Server 最核心的就是上述的 配置文件,前面的 图形界面步骤 并非必须,后续直接编辑 配置文件 也可以完成 MCP Server 的配置。Planning 模式:此模式用于生成详细的行动计划,非常适合在开始编写代码之前与 AI 进行沟通,清晰地分解任务,从而避免盲目操作导致的返工。
2025-11-16 15:37:05
563
原创 Richard Wei
heap_1 只分配,不释放(pvPortMalloc有效,vPortFree无效) 实现最简单,执行时间绝对确定(无碎片) 内存无法回收,分配后永久占用 只创建一次内核对象(如任务、队列),运行中不删除的场景(如固定功能的嵌入式设备)heap_1/4/5 的分配时间是大致确定的(遍历空闲块的次数有限),而 heap_2(碎片导致遍历变长)和 heap_3(依赖标准库,时间不确定)可能破坏实时性。系统稳定性的保障:例如 heap_1 避免了释放操作,适合资源受限且功能固定的场景(如传感器节点);
2025-11-16 15:32:57
569
原创 java中文乱码解决之道(一)-----认识字符集
两个模型均支持通过 ManySpeech.MoonshineAsr 库实现 离线(非流式)语音识别,也可结合内置或外接的语音端点检测(VAD)模块(如 ManySpeech.AliFsmnVad)实现 实时(流式)识别,适用于语音转写、实时字幕等场景。该项目是一个控制台/桌面端示例项目,主要用于展示语音识别的基础功能,像离线转写、实时识别等操作。moonshine-tiny-en-onnx:轻量级模型(27M 参数,约 190MB),适合资源受限的设备(如边缘设备、嵌入式设备),兼顾速度与基础识别精度。
2025-11-16 15:24:44
357
原创 可信前端之路-代码保护
但是在复杂系统中,不同的业务消息(例如“下单”、“扣库存”、“发积分”)在投递失败时,需要采取不同的补偿逻辑。策略模式的核心思想是:定义一系列算法(或行为),让它们可以相互替换,且算法的变化不会影响使用算法的客户。//根据bean的名称从map中获取相应的实现类。
2025-11-16 15:20:47
590
原创 如何以计算机的方式去思考
torch.Tensor 类型的 .shape 属性比较特殊,是一个数组类型,主要用于存储当前类型的结构,要结合上下文才能判断,例如在当前训练中,x.shape 值是 [64,1,28,28],shape[1] 是图像的通道,1 是灰色,3 是彩色(RGB三通道);为了训练模型,需要定义一个损失函数和一个优化器,损失函数的主要作用是衡量模型的预测结果与真实标签之间的差异,即误差或损失,有了损失函数后,通过优化器可以指导模型参数的调整,使预测结果能够逐步靠近真实值,从而提高模型的性能。
2025-11-15 16:48:02
576
原创 【AirSim】图像API的使用
使用切线向量(Tangent)或副切线(Bitangent)替代法线向量,通过TdotH = dot(tangent, halfVector)计算高光强度,再转换为TsinH = sqrt(1 - TdotH2)实现条状高光效果。该实现通过将Kajiya-Kay模型的核心计算融入URP的标准BRDF框架,既保持了PBR工作流的兼容性,又实现了纤维材质特有的各向异性高光效果。:通过噪声贴图扰动切线方向(ShiftTangent函数),增强高光的动态变化和真实感。D项 法线分布函数?
2025-11-15 16:43:26
265
原创 推动自动化测试和质量保障。尽管实施过程中存在挑战,但通过科学方法、合适工具及AI赋能,BDD能极大提升敏捷团队的测试效率和交付质量。 ...
改铱匦乒1.理论习题【中英】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验同样,这是本周理论部分的习题和相应解析,博主已经做好了翻译和解析工作,因此便不再重复。本周理论习题较为简单,几乎所有内容都在之前的理论部分提及过,涉及代码的题也只是简单的numpy语法问题,因此就不再就某道题展开了,我们将重点放在下面的代码部分。2.代码实操:带隐藏层的分类模型吴恩达神经网络实战第三周同样再次粘贴整理了课程习题的博主答案,博主依旧在不借助很多现在流行框架的情况下手动构建模型的各个部分,并手动
2025-11-15 16:39:18
478
原创 Java编译器优化秘籍:字节码背后的IR魔法与常见技巧
模型支持广泛:支持多个模型提供商,如 Gemini、OpenAI、Azure、X.AI、OpenRouter、DIAL、Ollama 等;多模型协作:作为 Model Context Protocol 服务器,可将喜爱的 AI 工具连接到多个 AI 模型,支持对话线程,让 CLI 能与多个 AI 模型讨论想法、交换推理、获取第二意见甚至进行协作辩论,实现真正的 AI 协作和对话连续性。简单讲,它提供沙箱、开发工具和测试基准,让AI能够学习控制完整的桌面系统(如macOS、Linux、Windows)。
2025-11-15 16:34:42
251
原创 微软开源的 MCP 教程「GitHub 热点速览」
本文主要是针对Python开发领域,对使用PySide6/PyQt6实现自定义窗口布局的探讨,因此也注意PyQt-Fluent-Widgets (https://github.com/zhiyiYo/PyQt-Fluent-Widgets)这个界面组件的实现效果,非常不错,因此对它的实现方式和组合界面的方式进行了一定的研究学习。在对这些界面大致了解后,心里希望模拟他们的实现方式,构造一个类似的自定义窗口布局,其中参考上面组件的作者的图示进行分析下。常用于多页面界面切换(比如“设置/主页/详情”之间切换)。
2025-11-15 16:29:52
380
原创 UD动作游戏开发读书笔记--. D游戏所需要的数学知识
本文主要是针对Python开发领域,对使用PySide6/PyQt6实现自定义窗口布局的探讨,因此也注意PyQt-Fluent-Widgets (https://github.com/zhiyiYo/PyQt-Fluent-Widgets)这个界面组件的实现效果,非常不错,因此对它的实现方式和组合界面的方式进行了一定的研究学习。在对这些界面大致了解后,心里希望模拟他们的实现方式,构造一个类似的自定义窗口布局,其中参考上面组件的作者的图示进行分析下。常用于多页面界面切换(比如“设置/主页/详情”之间切换)。
2025-11-14 14:05:22
289
原创 (修改认证方式、设置密码策略);)Zabbix安装(配置清华源、安装必要组件);)数据库初始化(创建库/用户、导入数据);)服... ...
有了这些,我们现在就具备了将生成JMX遥测数据的应用程序集成到任何支持 OpenTelemetry 的遥测管道中的工具。很多新的开源项目直接暴露 Prometheus 协议的监控数据,确实更方便,但很多老的 Java 应用仍然通过 JMX 暴露指标数据,所以掌握 JMX 监控方式,等于掌握了一批 Java 应用的监控方式。使用JMX抓取工具是个不错的入门方法,但它确实需要一个额外的 JAR 包,如果我们已经在使用 Java 代理,可能就不希望这样了。出于这个原因,它比 JMX 抓取工具更常用。
2025-11-14 14:00:18
724
原创 RFSOC学习记录(五)带通采样定理
本文介绍了夜莺的定位、架构、单进程还是多进程的抉择、高可用设计,如果你们公司只有一个机房或者有多个机房但是机房之间有很好的网络专线,那就部署一套夜莺就可以了,如果有多个机房,但是机房之间的网络链路很差,就需要考虑夜莺的边缘机房架构模式,咱们下一节详细介绍。需要考虑 sharding,比如有两个实例,有 1000 条规则,那每个实例要处理 500 条规则,不能重复执行,而且要均匀分配,如果某个实例挂了,剩下的实例要能承接原本宕机的实例负责的那些规则。如果是公司内部的系统,我更倾向于做成两个进程,方便维护。
2025-11-13 16:40:12
363
原创 架构师必备:限流方案选型(使用篇)
本文介绍了夜莺的定位、架构、单进程还是多进程的抉择、高可用设计,如果你们公司只有一个机房或者有多个机房但是机房之间有很好的网络专线,那就部署一套夜莺就可以了,如果有多个机房,但是机房之间的网络链路很差,就需要考虑夜莺的边缘机房架构模式,咱们下一节详细介绍。需要考虑 sharding,比如有两个实例,有 1000 条规则,那每个实例要处理 500 条规则,不能重复执行,而且要均匀分配,如果某个实例挂了,剩下的实例要能承接原本宕机的实例负责的那些规则。如果是公司内部的系统,我更倾向于做成两个进程,方便维护。
2025-11-13 16:33:59
240
原创 看懂SqlServer查询计划
裁剪之后的视频片段放在App安装路径下的cache目录,完整路径为“我的手机/Android/data/com/iknow.android/cache/视频片段的文件名.mp4”。打开Android-Video-Trimmer工程的app/build.gradle,发现里面引用了支持库Support v27,但Android早已废弃Support库,转为使用AndroidX库,所以要么把Support库升级到最后更新的v28库,要么把支持库迁移到AndroidX。二、更新工具库的仓库位置。
2025-11-12 15:03:38
410
原创 非常好玩的C#/.NET 基础 -- 安全有效引发事件
本文介绍了夜莺的定位、架构、单进程还是多进程的抉择、高可用设计,如果你们公司只有一个机房或者有多个机房但是机房之间有很好的网络专线,那就部署一套夜莺就可以了,如果有多个机房,但是机房之间的网络链路很差,就需要考虑夜莺的边缘机房架构模式,咱们下一节详细介绍。需要考虑 sharding,比如有两个实例,有 1000 条规则,那每个实例要处理 500 条规则,不能重复执行,而且要均匀分配,如果某个实例挂了,剩下的实例要能承接原本宕机的实例负责的那些规则。如果是公司内部的系统,我更倾向于做成两个进程,方便维护。
2025-11-12 14:57:56
304
原创 【C++】神秘-希尔排序
裁剪之后的视频片段放在App安装路径下的cache目录,完整路径为“我的手机/Android/data/com/iknow.android/cache/视频片段的文件名.mp4”。打开Android-Video-Trimmer工程的app/build.gradle,发现里面引用了支持库Support v27,但Android早已废弃Support库,转为使用AndroidX库,所以要么把Support库升级到最后更新的v28库,要么把支持库迁移到AndroidX。二、更新工具库的仓库位置。
2025-11-11 14:25:30
283
原创 BricheersZ
本文介绍了夜莺的定位、架构、单进程还是多进程的抉择、高可用设计,如果你们公司只有一个机房或者有多个机房但是机房之间有很好的网络专线,那就部署一套夜莺就可以了,如果有多个机房,但是机房之间的网络链路很差,就需要考虑夜莺的边缘机房架构模式,咱们下一节详细介绍。需要考虑 sharding,比如有两个实例,有 1000 条规则,那每个实例要处理 500 条规则,不能重复执行,而且要均匀分配,如果某个实例挂了,剩下的实例要能承接原本宕机的实例负责的那些规则。如果是公司内部的系统,我更倾向于做成两个进程,方便维护。
2025-11-11 14:20:24
306
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅