数据挖掘导论
文章平均质量分 90
数据挖掘相关的基础知识,主要基于关系型数据库
Chahot
合抱之木,生于毫末;九层之台,起于累土;驽马十驾,终至千里。
展开
-
理解和实现简单的XOR神经网络
本文介绍了神经网络的基本知识,并以实现一个简单的XOR神经网络为例,详细解释了神经网络的工作原理和关键概念。我们将利用Python编写的代码来逐步理解并实现这个神经网络。神经网络是一种模仿生物神经系统的计算模型,用于处理复杂的输入数据。本文将通过实现一个简单的多层感知器(MLP)神经网络,帮助读者理解神经网络的基本原理和关键概念。原创 2023-04-19 17:03:31 · 1729 阅读 · 0 评论 -
MatLab 画图方法
二维图和三维图线图要创建二维线图,请使用 plot 函数。例如,绘制在从 0 到 2π 的值组成的线性间距向量上的正弦函数:y = sin(x);plot(x,y)可以标记轴并添加标题。通过向 plot 函数添加第三个输入参数,您可以使用红色虚线绘制相同的变量。“r–” 为线条设定。每个设定可包含表示线条颜色、样式和标记的字符。标记是在绘制的每个数据点上显示的符号,例如,+、o 或。例如,g:" 请求绘制使用 * 标记的绿色点线。原创 2022-10-30 11:21:53 · 855 阅读 · 0 评论 -
【软件工程-错误定位方法】VFL(V)程序错误定位的结果报告
使用自动故障定位技术的主要目的是在调试过程中通过减少查找故障的搜索区域来帮助开发人员。因此,我们对VFL (V)技术进行了评估,方法是评估要检查的源代码的数量,直到发现真正的错误语句。虽然回答RQ1可以提供关于VFL (V)技术的总体性能的信息,但我们想要评估VFL(V)技术更彻底。从RQ1中,我们得到的答案是“当发现错误时,只检查3%的语句”。但是,如果被检查的程序有超过一百万行代码,这对开发人员没有帮助。翻译 2022-10-17 11:22:45 · 625 阅读 · 0 评论 -
数据挖掘中的数据分类
分类、决策树与模型评估分类决策树分类分类就是通过学习一个目标函数F,把每个属性集x映射到一个预先定义好的类标号y上。目标函数也被称为分类模型。建模分为两种目的,一种是描述性建模一种是预测性建模。对于学习算法,我们将一部分数据分为训练集和测试集,一般训练集占比70%测试集占总体数据集的30%。通过对训练集的学习训练建立一个适合处理对应一类数据的模型,然后将这个模型套用到测试集上,来观察数据的处理效果,根据是否能得到预期重新评价模型,决定是否要继续训练或者改变训练集比例。混淆矩阵是一个用来测试训练原创 2022-04-15 08:29:15 · 4920 阅读 · 0 评论 -
数据挖掘中的数据可视化概念
数据探索汇总统计数据意义与定义可视化表示安排选择可视化高纬数据OLAP汇总统计汇总统计(summary statistics)是量化的( 如均值和标准差),用单个数或数的小集合捕获可能很大的值集的各种特征。汇总统计的日常例子有家庭平均收入、四年内完成本科学位的学生比例。的确,对于许多人,汇总统计是最常见的统计形式。我们将集中讨论对单个属性值的汇总统计,但是也将简略介绍某些多变元汇总统计。本节只考虑汇总统计的描述性质。然而,统计学将数据视为源于被各种参数刻画的基本统计过程,而这里讨论的某些汇总统计可以看原创 2022-04-07 07:15:00 · 1287 阅读 · 0 评论 -
总结OLAP与变量变换
OLAP,ROLAP,MOLAP,数据变量变换等概念的小结原创 2022-04-06 13:34:36 · 810 阅读 · 0 评论 -
什么是数据的类型、质量、预处理、相似性?
数据数据类型属性与度量数据类型通常,数据集可以看作数据对象的集合。数据对象有时也叫做记录、点、向量、模式、事件、案例、样本、观测或实体。数据对象用一组刻画对象基本特性(如物体质量或事件发生时间)的属性描述。属性有时也叫做变量、特性、字段、特征或维。数据集是一个文件,可以用表格来表示。其中每一行表示一个数据对象,而每一列表示一个特有的属性。这是关系型数据库中的典型表现,但是由于还存在其他类型的数据库,因此这样的定义也不是绝对的。但是作为对数据的属性和对象的浅层理解,在这个位置这样的解释个人认为是合理的原创 2022-04-06 13:23:53 · 1451 阅读 · 0 评论 -
什么是数据挖掘?数据挖掘的目标是什么?
数据挖掘绪论什么是数据挖掘数据挖掘要解决的问题是什么?数据挖掘的任务预测建模关联分析聚类分析异常检测什么是数据挖掘并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索( information retrieval) 领域的任务。虽然这些任务非常重要,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,人们也在利用数据挖掘技术增强信息检索原创 2022-03-18 07:15:00 · 4989 阅读 · 0 评论