ReLU、LeakyReLU
ReLU作为激活函数被广泛应用于各种深度神经网络中。在这篇博客中,我主要记录一下它和它的变种在caffe中的实现。
先看下来自wikipedia的一张示意图,图中蓝色的线表示的就是ReLU函数。
ReLU激活函数极为
f(x)=max(0,x)
。而LeakyReLU则是其变体
f(x)=max(0,x)+negative_slope×min(0,x)
,其中,
negative_slope
是一个小的非零数。
综上,在caffe中,ReLU和LeakyReLU都包含在relu_layer中。
在后向传播过程中,ReLU做如下运算:
而变体的LeakyReLU则做:
接下来,我们来看看ReLU层的参数。
// Message that stores parameters used by ReLULayer
message ReLUParameter {
// Allow non-zero slope for negative inputs to speed up optimization
// Described in:
// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
// improve neural network acoustic models. In ICML Workshop on Deep Learning
// for Audio, Speech, and Language Processing.
optional float negative_slope = 1 [default = 0]; //如之前分析的,默认值0即为ReLU,非零则为LeakyReLU
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 2 [default = DEFAULT]; //运算引擎选择,一般选择默认
}
PReLU
PReLU,即Parametric ReLU,是何凯明组提出的一种改进ReLU。它的数学表示为
yi=max(0,xi)+ai×min(0,xi)
,其中
a
是可学习参数。当
参数 a 的更新公式如下:
PReLU的实现不包含在ReLU中,主要是有可学习参数 a <script type="math/tex" id="MathJax-Element-12">a</script>,它的实现包含在prelu_layer中。
message PReLUParameter {
// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
// Surpassing Human-Level Performance on ImageNet Classification, 2015.
// Initial value of a_i. Default is a_i=0.25 for all i.
optional FillerParameter filler = 1; //默认填充,a_i的初始值为0.25
// Whether or not slope parameters are shared across channels.
optional bool channel_shared = 2 [default = false]; //是否通道共享参数,默认为不共享
}
Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification