LintCode -- 不同的子序列

LintCode -- distinct-subsequences(不同的子序列)


原题链接:http://www.lintcode.com/zh-cn/problem/distinct-subsequences/


给出字符串S和字符串T,计算S的不同的子序列中T出现的个数。

子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响。(比如,“ACE”“ABCDE”的子序列字符串,而“AEC”不是)。 

样例

给出S = "rabbbit", T = "rabbit"

返回 3


分析:

dp[ i ][ j ] 表示 T 有 j 个字符,S有 i 个字符时不同子序列个数。

递归式 if (T[ i ] == S[ j ]) dp[ i ][ j ] = dp[ i ][ j-1 ] + dp[ i-1 ][ j-1 ]

           else dp[ i ][ j ] = dp[ i ][ j-1 ]

**** 时间复杂度 O(n*m), 空间复杂度 O(m) ****


代码(C++、Java、Python):

<span style="font-size:18px;">class Solution {
public:    
    /**
     * @param S, T: Two string.
     * @return: Count the number of distinct subsequences
     */
    int numDistinct(string &S, string &T) {
        // write your code here
        int n = S.size();
        int m = T.size();
        int dp[m+1][2];
        memset(dp, 0, sizeof(dp));
        for (int j = 0; j < 2; j++)
            dp[0][j] = 1;
        for (int j = 1; j < n+1; j++)
            for (int i = 1; i < m+1; i++){
                dp[i][j%2] = dp[i][(j-1)%2];
                if (T[i-1] == S[j-1])
                    dp[i][j%2] += dp[i-1][(j-1)%2];
            }
        return dp[m][n%2];
    }
};</span>

<span style="font-size:18px;">public class Solution {
    /**
     * @param S, T: Two string.
     * @return: Count the number of distinct subsequences
     */
    public int numDistinct(String S, String T) {
        // write your code here
        int n = S.length();
        int m = T.length();
        int [][] dp = new int [m+1][2];
        for (int j = 0; j < 2; j++)
            dp[0][j] = 1;
        for (int j = 1; j < n+1; j++)
            for (int i = 1; i < m+1; i++){
                dp[i][j%2] = dp[i][(j-1)%2];
                if (T.charAt(i-1) == S.charAt(j-1))
                    dp[i][j%2] += dp[i-1][(j-1)%2];
            }
        return dp[m][n%2];
    }
}</span>

<span style="font-size:18px;">class Solution: 
    # @param S, T: Two string.
    # @return: Count the number of distinct subsequences
    def numDistinct(self, S, T):
        # write your code here
        n = len(S)
        m = len(T)
        dp = [[0 for j in range(2)] for i in range(m+1)]
        for j in range(2):
            dp[0][j] = 1
        for j in range(1, n+1):    
            for i in range(1, m+1):
                dp[i][j%2] = dp[i][(j-1)%2]
                if T[i-1] == S[j-1]:
                    dp[i][j%2] += dp[i-1][(j-1)%2]
        return dp[m][n%2]</span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值