LintCode -- distinct-subsequences(不同的子序列)
原题链接:http://www.lintcode.com/zh-cn/problem/distinct-subsequences/
给出字符串S和字符串T,计算S的不同的子序列中T出现的个数。
子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响。(比如,“ACE”是“ABCDE”的子序列字符串,而“AEC”不是)。
样例
代码(C++、Java、Python):
给出S = "rabbbit", T = "rabbit"
返回 3
分析:
dp[ i ][ j ] 表示 T 有 j 个字符,S有 i 个字符时不同子序列个数。
递归式 if (T[ i ] == S[ j ]) dp[ i ][ j ] = dp[ i ][ j-1 ] + dp[ i-1 ][ j-1 ]
else dp[ i ][ j ] = dp[ i ][ j-1 ]
**** 时间复杂度 O(n*m), 空间复杂度 O(m) ****
<span style="font-size:18px;">class Solution {
public:
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
int numDistinct(string &S, string &T) {
// write your code here
int n = S.size();
int m = T.size();
int dp[m+1][2];
memset(dp, 0, sizeof(dp));
for (int j = 0; j < 2; j++)
dp[0][j] = 1;
for (int j = 1; j < n+1; j++)
for (int i = 1; i < m+1; i++){
dp[i][j%2] = dp[i][(j-1)%2];
if (T[i-1] == S[j-1])
dp[i][j%2] += dp[i-1][(j-1)%2];
}
return dp[m][n%2];
}
};</span>
<span style="font-size:18px;">public class Solution {
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
public int numDistinct(String S, String T) {
// write your code here
int n = S.length();
int m = T.length();
int [][] dp = new int [m+1][2];
for (int j = 0; j < 2; j++)
dp[0][j] = 1;
for (int j = 1; j < n+1; j++)
for (int i = 1; i < m+1; i++){
dp[i][j%2] = dp[i][(j-1)%2];
if (T.charAt(i-1) == S.charAt(j-1))
dp[i][j%2] += dp[i-1][(j-1)%2];
}
return dp[m][n%2];
}
}</span>
<span style="font-size:18px;">class Solution:
# @param S, T: Two string.
# @return: Count the number of distinct subsequences
def numDistinct(self, S, T):
# write your code here
n = len(S)
m = len(T)
dp = [[0 for j in range(2)] for i in range(m+1)]
for j in range(2):
dp[0][j] = 1
for j in range(1, n+1):
for i in range(1, m+1):
dp[i][j%2] = dp[i][(j-1)%2]
if T[i-1] == S[j-1]:
dp[i][j%2] += dp[i-1][(j-1)%2]
return dp[m][n%2]</span>