数据结构学习日志之九--树

本文介绍了树这一数据结构的基础概念,包括定义、组成元素及其关系。详细解释了结点、根、子树、叶子结点等术语,并说明了树的深度、度等特性。
摘要由CSDN通过智能技术生成

树是n(n >= 0)个结点的有限集。在任意一个非空树中

1.有且仅有一个特定的称为根(Root)的结点;

2.当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2...Tm,其中每一个集合本身又是一棵树,并且称为根的子树


如上图,是有13个结点的树,其中A是根,其余结点分成3个互不相交的子集:T1 = {B, E, F, K, L},T2 = {C, G}, T3 = {D, H, I , J, M},这3个都是根A的子树,且本身也是一棵树。T11 = {E,K,L},T12 = {F}都是B的子树。

树的结点包含一个数据元素及若干指向其子树的分支。结点拥有的子树数称为结点的度。

例如上图,A的度为3,C的度为1,G的度为0。度为0的结点为叶子结点或者终端结点。度不为0的结点称为非终端结点或分支结点。除根结点之外,分支结点也称为内部结点。

树的度是树内各结点的度的最大值。结点的子树的根称为该结点的孩子,该结点称为孩子的双亲。

树中结点的最大层次称为树的深度。例如上图的树的深度为4

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值