sklearn中的predict_proba与predict

版权声明:本文为博主原创文章,转载请附上此地址。 https://blog.csdn.net/qq_36523839/article/details/80405455

发现个很有用的方法——predict_proba

今天在做数据预测的时候用到了,感觉很不错,所以记录分享一下,以后可能会经常用到。

我的理解:predict_proba不同于predict,它返回的预测值为,获得所有结果的概率。(有多少个分类结果,每行就有多少个概率,以至于它对每个结果都有一个可能,如0、1就有两个概率)

举例:

获取数据及预测代码:


   
   
  1. from sklearn.linear_model import LogisticRegression
  2. import numpy as np
  3. train_X = np.array(np.random.randint( 0, 10,size= 30).reshape( 10, 3))
  4. train_y = np.array(np.random.randint( 0, 2,size= 10))
  5. test_X = np.array(np.random.randint( 0, 10,size= 12).reshape( 4, 3))
  6. model = LogisticRegression()
  7. model.fit(train_X,train_y)
  8. test_y = model.predict_proba(test_X)
  9. print(train_X)
  10. print(train_y)
  11. print(test_y)

训练数据


   
   
  1. [[ 2 9 8]
  2. [ 0 8 5]
  3. [ 7 1 2]
  4. [ 8 4 6]
  5. [ 8 8 3]
  6. [ 7 2 7]
  7. [ 6 4 3]
  8. [ 1 4 4]
  9. [ 1 9 3]
  10. [ 3 4 7]]

训练结果,与训练数据一一对应:

[1 1 1 0 1 1 0 0 0 1]
   
   


测试数据:


   
   
  1. [[ 4 3 0]         #测试数据
  2. [ 3 0 4]
  3. [ 2 9 5]
  4. [ 2 8 5]]

测试结果,与测试数据一一对应:


   
   
  1. [[ 0.48753831 0.51246169]    
  2. [ 0.58182694 0.41817306]
  3. [ 0.85361393 0.14638607]
  4. [ 0.57018655 0.42981345]]
可以看出,有四行两列,每行对应一条预测数据,两列分别对应 对于0、1的预测概率(左边概率大于0.5则为0,反之为1)


我们来看看使用predict方法获得的结果:


   
   
  1. test_y = model.predict(test_X)
  2. print(test_y)
  3. 输出结果:[ 1, 0, 0, 0]
所以有的情况下predict_proba还是很有用的,它可以获得对每种可能结果的概率,使用predict则是直接获得唯一的预测结果,所以在使用的时候,应该灵活使用。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值