- 博客(234)
- 资源 (12)
- 收藏
- 关注
原创 StarRocks常用操作说明
本文介绍了集群管理、配置管理、表设计、数据分区、列操作、数据操作、批量导入、数据导出及查询优化的相关操作。通过命令查看和管理FE、BE节点状态,动态配置参数;设计明细模型和主键模型表,支持高频数据写入;通过分区表达式优化数据存储和查询效率;新增、修改、删除列操作;进行数据的增删改查;通过BrokerLoad和StreamLoad批量导入数据;导出数据至OSS;利用物化视图和分桶裁剪优化查询性能。
2025-05-16 09:45:55
623
原创 DB-GPT扩展自定义app配置说明
本文介绍了如何扩展一个自定义的app插件,重点展示了生成HOCON格式配置文件的代码实现。文章首先提到生成效果存在问题,后续将通过调整提示词进行优化。代码部分详细展示了如何从chat_normal复制并修改为chat_di,包括导入相关模块、定义提示词模板、配置场景适配器以及注册提示词模板。此外,文章还介绍了ChatDi场景的定义、工厂类的导入以及GptsApp的创建和注册过程。整体内容涉及代码的复制、修改和扩展,旨在实现数据集成问答功能。
2025-05-15 17:10:30
813
原创 通义灵码2.5版本全新体验
通义灵码2.5版正式发布,新增支持Qwen3,并引入智能体模式,具备自主决策、工程和记忆自感知、工具使用等能力。该版本集成了魔搭MCP广场,提供3000+ MCP工具的一键安装使用。通义灵码支持多种IDE,包括JetBrains IDEs(如IntelliJ IDEA、PyCharm等)、Visual Studio Code、Visual Studio等,并兼容Windows、macOS、Linux操作系统。此外,它还支持Remote SSH、Docker、WSL等远程开发场景,以及VSCode
2025-05-13 16:49:59
747
原创 大模型LLM通过python调用mcp服务代码示例
本文介绍了如何通过Python代码开启MCP服务,并实现网页抓取功能。代码中定义了一个MCPAgent类,用于连接SSE服务并执行工具调用。首先,通过AsyncOpenAI初始化LLM(大语言模型),并使用connect_server方法连接本地SSE服务。然后,通过execute_workflow方法执行工作流,包括获取工具描述、LLM决策工具调用、执行工具调用及结果整合。示例查询中,通过LLM对指定网页进行抓取并总结三个关键点。最后,输出最终响应并关闭连接。该代码展示了如何利用MCP服务和LLM实现自动
2025-05-12 18:24:57
333
原创 SeaTunnel本地调试任务说明-Minio到Mysql
修改SeaTunnelEngineExample代码,保持与配置文件名称一致。准备conf配置文件,这里以minio到mysql为例。将配置文件放至example目录下。运行代码,出现统计结果即可。
2025-04-28 11:02:49
714
原创 Linux安装ffmpeg7.1操作说明
下载最新版wget 解压编译及安装make && make install官方下载:./configure --prefix=/usr/local/ffmpegvim /etc/profile验证是否安装成功。
2025-04-23 17:28:34
540
原创 DB-GPT支持mcp协议配置说明
在 DB-GPT 中使用 MCP(Model Context Protocol)协议,主要通过配置 MCP 服务器和智能体协作实现外部工具集成与数据交互。这里主要用到单一智能体+ToolExpert。开启对话验证mcp服务效果。
2025-04-22 15:18:41
510
2
原创 OpenManus安装部署和基础使用说明
这里等待了很久也没有在指定目录下看到生成的图片,不过确实调用了浏览器工具,可能是选的模型不太行,有成功的小伙伴也可以一起交流沟通下~它通过多智能体协作和工具链集成,实现复杂任务的自动化处理,例如生成报告、执行代码、操作浏览器等。是由 MetaGPT 团队开发的开源通用 AI 智能体框架,旨在复刻商业产品 。使用playwright打开百度,并点击搜索按钮,截图保存到本地目录。
2025-04-02 17:27:10
369
原创 Cursor通过mcp调用playwright示例
调用打开百度官网,输入测试点击搜索并截图。打开聊天窗口可以看到多了个agent。cursor mcp配置。ursor开启agent。
2025-03-31 17:34:15
971
原创 UV——python版本与依赖管理工具
它主要解决传统工具(如 pip、virtualenv、pip-tools)速度慢、功能分散的问题,通过 Rust 实现底层逻辑,显著提升效率。执行uv sync,这样就可以根据pyproject.tom、uv.lock自动安装依赖包。uv pip install -r uv.lock # 确保所有环境版本一致。source venv/bin/activate # 激活环境。uv pip install flask # 直接安装包。uv venv # 创建虚拟环境 venv。# 或通过 pipx。
2025-03-21 10:30:19
689
原创 基于FastAPI-Users实现用户管理系统的完整方案
FastAPI-Users是一个用于用户身份管理的扩展。它简化了用户注册、登录和权限管理的流程,用户只需初始化FastAPIUsers并包含路由即可。适用于需要完整用户管理系统(注册/登录/权限)的场景。
2025-03-13 11:58:04
715
原创 mysql插入数据java.sql.SQLException: Incorrect string value: ‘\xF0\x9F\x94\x97 B...‘ for column 问题修复
原因是Emoji表情或者某些特殊字符是4个字节,而MySQL的utf8编码最多3个字节,所以数据插不进去。修改后重启Mysql sudo service mysql restart。重建表,修改表编码为utf8mb4。这里可以看到编码确实不对。
2025-03-12 11:05:03
471
原创 windows环境DBGPT0.7.0安装部署说明
全量依赖(比如LLMs使用的本地模型,embedding使用的OpenAI Proxy等)只用到代理模型,没有涉及到本地模型。
2025-03-11 09:53:45
692
原创 Docker安装milvus及其基本使用说明
Milvus 是一款开源的高性能、高可用的向量数据库,专为大规模机器学习和深度学习应用设计,旨在高效管理和检索高维向量数据。随着AI技术的飞速发展,向量数据库在图像识别、语音识别、自然语言处理、推荐系统等领域扮演着越来越重要的角色。本文将深入浅出地介绍Milvus的安装及其基本使用。
2025-03-04 14:18:05
518
原创 DBGPT安装部署使用
目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。不过,后续重新开启新的对话后,相关内容能够正确展示。这个功能并不会执行sql语句,这里的数据是大模型自己造的,数据对话是支持查询真实数据。支持数据对话、数据库对话、Excel对话、知识库对话、报表分析、Linux&Unix平台。新建models目录。
2025-02-28 18:19:26
1436
原创 协同过滤算法的作用和示例
协同过滤算法的核心思想是利用用户之间的相似性或物品之间的相似性来进行推荐。如果用户 A 和用户 B 对一些物品的偏好很相似,那么就可以认为他们是相似用户,当用户 A 对某个物品有特定行为(如购买、评分很高等),而用户 B 还没有接触过这个物品时,就可以把这个物品推荐给用户 B;同理,如果物品 M 和物品 N 被很多相同的用户喜欢,那么当一个用户对物品 M 感兴趣时,就可以向该用户推荐物品 N。print(f"基于用户的协同过滤预测用户 0 对物品 2 的评分为: {predicted_rating}")
2025-02-26 14:28:57
768
原创 DeepSeek 高效提问指南
DeepSeek 是一款面向多场景的智能助手,擅长通过结构化提问获取精准回答。本指南将帮助您通过 6 大要素优化提问,获得更专业、实用、个性化的解决方案。
2025-02-24 10:11:43
1169
原创 TuGraph基础操作入门
TuGraph图数据库由蚂蚁集团与清华大学联合研发,构建了一套包含图存储、图计算、图学习、图研发平台的完善的图技术体系,拥有业界领先规模的图集群,解决了图数据分析面临的大数据量、高吞吐率和低延迟等重大挑战,是蚂蚁集团金融风控能力的重要基础设施,显著提升了欺诈洗钱等金融风险的实时识别能力和审理分析效率,并面向金融、工业、政务服务等行业客户。指定边的起/终点类型:可限制边的起点和终点点类型,支持同类型边的起点和终点的点类型不同,如个人转账给公司、公司转账给公司;若要模拟无向边,用户可以创建两个方向相反的边。
2025-02-20 09:47:21
1046
原创 LangChain实践12-聊天
它与之前非常相似,但我们将添加聊天历史的功能。memory = ConversationBufferMemory(memory_key="chat_history", # 与 prompt 的输入变量保持一致。button_load = pn.widgets.Button(name="Load DB", button_type='primary') # 加载数据库的按钮。file_input = pn.widgets.FileInput(accept='.pdf') # PDF 文件的文件输入小部件。
2025-02-18 09:44:30
1057
原创 LangChain实践11-问答
但改进之处在于,最终输入语言模型的 Prompt 是一个序列,将之前 的回复与新文档组合在一起,并请求得到改进后的响应。因此,这是一种类似于 RNN 的概念,增强了上 下文信息,从而解决信息分布在不同文档的问题。在获取与问题相关的文档后,我们需要将文档和原始问题一起输入语言模型,生成回答。虽然这样涉及了更多对语言模型的调用,但它的优 势在于可以处理任意数量的文档。为了实现 这一点,我们需要引入内存,这是我们将在下一节中讨论的内容。template = """使用以下上下文片段来回答最后的问题。
2025-02-17 09:44:01
857
原创 LangChain实践10-检索
其工作原理是,先使用标准向量 检索获得候选文档,然后基于查询语句的语义,使用语言模型压缩这些文档,只保留与问题相关的部分。在上一节课中,关于失败的应用场景我们还提出了一个问题,是询问了关于文档中某一讲的问题,但得 到的结果中也包括了来自其他讲的结果。这是我们所不希望看到的结果,之所以产生这样的结果是因为 当我们向向量数据库提出问题时,数据库并没有很好的理解问题的语义,所以返回的结果不如预期。当向量数据库中存在相同的文档 时,而用户的问题又与这些重复的文档高度相关时,向量数据库会出现返回重复文档的情况。
2025-02-14 09:48:30
793
原创 LangChain实践9-向量数据库与词向量(Vectorstores and Embeddings)
在机器学习和自然语言处理(NLP)中, Embeddings (嵌入)是一种将类别数据,如单词、句子或者整 个文档,转化为实数向量的技术。嵌入背后的主要想法 是,相似或相关的对象在嵌入空间中的距离应该很近。例如,"king" 和 "queen" 这两个单词在嵌入空间中 的位置将会非常接近,因为它们的含义相似。而 "apple" 和 "orange" 也会很接近,因为它们都是水果。而 "king" 和 "apple" 这两个单词在嵌入空间中的距离就会比较远,因为它们的含义不同。我们将使用点积来比较两个嵌入。
2025-02-13 09:43:05
763
原创 LangChain实践8-文档分割
text = "在AI的研究中,由于大模型规模非常大,模型参数很多,在大模型上跑完来验证参数好不好训练时间成本很高,所以一般会在小模型上做消融实验来验证哪些改进是有效的再去大模型上做实验。需要注意的是,虽然文档分割有其优点,但也可能导致一些上下文信息的丢失,尤其是在分割点附近。# 将块大小设为1,块重叠大小设为0,相当于将任意字符串分割成了单个Token组成的列。因此在分割文本时,首先会采用双分换行符进行分割,同时依次使用其他分隔符进行分割。李白乘舟将欲行\n\n 忽然岸上踏歌声\n\n \。
2025-02-12 09:58:44
617
原创 LangChain实践7-文档加载
基于 LangChain 提供给 LLM 访问用户 个人数据的能力,首先要加载并处理用户的多样化、非结构化个人数据。在本章,我们首先介绍如何加 载文档(包括文档、视频、网页等),这是访问个人数据的第一步。# 创建一个 PyPDFLoader Class 实例,输入为待加载的pdf文档路径。# 调用 PyPDFLoader Class 的函数 load对pdf文件进行加载。# 调用 WebBaseLoader Class 的函数 load对文件进行加载。
2025-02-11 09:43:03
403
原创 LangChain实践6-代理
例如,语言模型无法准 确回答简单的计算问题,还有当询问最近发生的事件时,其回答也可能过时或错误,因为无法主动获取 最新信息。在本章中,我们将详细介绍代理的工作机制、种类、以及如何在 LangChain 中将其与语言模型配合,构 建功能更全面、智能程度更高的应用程序。代理作为语言模型的外部模块,可提供计算、逻辑、检索等功能的支持,使语言模型获得异常强大的推 理和获取信息的超能力。customer_list = ["小明","小黄","小红","小蓝","小橘","小绿",]如果出现错误,请尝试再次运行它。
2025-02-10 09:41:39
655
原创 LangChain实践5-评估
example_gen_chain = ChineseQAGenerateChain.from_llm(ChatOpenAI(api_key="sk-xxxx"))#通过传递chat open AI语言模型来创建这个链。from langchain.evaluation.qa import QAGenerateChain #导入QA生成链,它将接收文档,并从每个文档中创建一个问题答案对。# 对预测的结果进行评估,导入QA问题回答,评估链,通过语言模型创建此链。"answer": "使用干布清洁。
2025-02-09 11:57:02
551
原创 LangChain实践4-基于文档的问答
Map Re-rank: 对每个文档进行单个语言模型调用,要求它返回一个分数,选择最高分,这依赖于语言模型知道分数应该是什么,需要告诉它,如果它与文档相关,则应该是高分,并在那里精细调整说明,可以批量处理它们相对较快,但是更加昂贵。它将所有文档视为独立的。Refine: 用于循环许多文档,际上是迭代的,建立在先前文档的答案之上,非常适合前后因果信息并随时间逐步构建答案,依赖于先前调用的结果。print("\n\033[32m返回文档的个数: \033[0m \n", len(docs))
2025-02-08 10:03:19
967
原创 开源项目-私人牙医管理系统
哈喽,大家好,今天给大家带来一个开源项目-私人牙医管理系统,项目使用springboot+mysql技术实现 私人牙医管理系统的主要功能包括客户管理,医生管理,药品管理,文章管理模块。
2025-02-08 09:49:02
45
原创 LangChain实践3-模型链
链(Chains)可以一次性接受多个输入。具体来说,我们将使用简单顺序链 (SimpleSequentialChain),这是顺序链的最简单类型,其中每个步骤都有一个输入/输出,一个步骤 的输出是下一个步骤的输入。让我们选择一篇评论并通过整个链传递它,可以发现,原始review是法语,可以把英文review看做是一 种翻译,接下来是根据英文review得到的总结,最后输出的是用法语原文进行的续写信息。大语言模型链(LLMChain)是一个简单但非常强大的链,也是后面我们将要介绍的许多链的基础。
2025-02-07 09:38:55
693
原创 AI大模型评测对比2—ChatGPT对比DeepSeek
令人瞩目的是,它仅耗费 2048 块显卡, 600 亿美元的成本,便成功训练出了可与顶级模型比肩的 Deepseek - V3 模型。因此,对于最后一个问题,只能通过直接调用模型的方式进行调试,其回复内容仅供参考。若有小伙伴知晓其中缘由,欢迎在评论区留言告知。这里deepseek经过多轮测试最终得到了正确结果,这里由于篇幅有限,暂时省略了中间的推理过程,有兴趣的同学可以自行测试。结尾依旧奉上最受欢迎大模型评选,欢迎大家积极在社区投票选择哪个大模型的解答更好,给后续有使用需求的同学提供一个参考~
2025-02-06 12:03:01
2190
原创 LangChain实践2-储存
随着对话变得越来越长,所需的内存量也变得非常长。"}, {"output": f"{schedule}"})memory.save_context({"input": "你好,我叫皮皮鲁"}, {"output": "你好啊,我叫鲁西西"})memory.save_context({"input": "你好,我叫皮皮鲁"}, {"output": "你好啊,我叫鲁西西"})memory.save_context({"input": "你好,我叫皮皮鲁"}, {"output": "你好啊,我叫鲁西西"})
2025-02-06 09:48:05
688
原创 LangChain实践1-使用 LangChain 开发应用程序
print("第一个客户客户消息类型类型:", type(customer_messages[0]),"\n")并将它们输出为逗号分隔的 Python 列表")print("第一个客户客户消息类型类型: ", customer_messages[0],"\n")print("客户消息类型:",type(customer_messages),"\n")print("结果类型:", type(response.content))print("结果类型:", type(response.content))
2025-02-05 14:59:29
514
原创 Linux 安装Docker-compose
它通过一个名为 docker-compose.yml 的 YAML 文件来描述整个应用的服务、网络和数据卷配置,使得开发者可以轻松地在一个文件中定义并管理多个相互依赖的 Docker 容器。总结来说,Docker Compose 提供了一种声明式的、面向应用层面的编排方法,使得复杂分布式应用程序可以在本地开发环境中快速搭建,并且方便地迁移到生产环境。此外,Docker Compose 还支持便捷的命令来进行服务的启停、重启、构建镜像、查看日志等操作,极大提高了对多容器应用的管理效率。
2025-01-24 13:40:10
314
原创 LLM大模型实践19-评估(下)——不存在简单的正确答案
1. CineView 4K电视(型号:CV-4K55)- 55英寸显示屏,4K分辨率,支持HDR和智能电视功能。2. CineView 8K电视(型号:CV-8K65)- 65英寸显示屏,8K分辨率,支持HDR和智能电视功能。1. CineView 4K电视(型号:CV-4K55)- 55英寸显示屏,4K分辨率,支持HDR和智能电视功能。2. CineView 8K电视(型号:CV-8K65)- 65英寸显示屏,8K分辨率,支持HDR和智能电视功能。提交的答案可能是专家答案的子集、超集,或者与之冲突。
2025-01-24 09:36:58
950
原创 LLM大模型实践18-评估(上)——存在一个简单的正确答案
"TechPro 超极本", "BlueWave 游戏本", "PowerLite Convertible", "TechPro Desktop", "BlueWave Chromebook"{"customer_msg":f"""告诉我关于smartx pro手机和fotosnap相机的信息,那款DSLR的。{"customer_msg":"""告诉我关于CineView电视,那款8K电视、\。{"customer_msg":f"""有哪些游戏机适合我喜欢赛车游戏的朋友?我的预算有限,你们有哪些电脑?
2025-01-23 10:05:12
946
原创 LLM大模型实践17-搭建一个带评估的端到端问答系统
{'role': 'assistant', 'content': f"相关商品信息:\n{product_information}"}if debug: print("第五步:输出被 Moderation 拒绝")if debug: print("第一步:输入通过 Moderation 检查")if debug: print("第七步:模型赞同了该回答.")"名称": "FotoSnap Mirrorless Camera","描述": "使用这款时尚而功能强大的声音,升级您电视的音频体验。
2025-01-22 09:30:14
600
原创 LLM大模型实践16-检查结果
代理的回复: ```{final_response_to_customer}```产品信息: ```{product_information}```产品信息: ```{product_information}```产品信息、用户和客服代理的信息将使用三个反引号(即 ```)\。顾客的信息: ```{customer_message}```顾客的信息: ```{customer_message}```代理的回复: ```{another_response}```回复是否正确使用了检索的信息?
2025-01-21 13:50:20
182
ffmpeg-7.1.tar.gz
2025-04-23
开源多媒体处理工具,ffmpeg-0.10.11.tar.gz
2025-04-23
翻译模型,英文转中文models-Helsinki-NLP-opus-mt-en-zh
2025-04-22
金融行业智能分析AI Agent的应用实践与技术创新:提升数据分析效率与决策能力了智能分析AI
2025-04-02
DB-GPT是一个开源的AI原生数据应用开发框架
2025-02-28
basketballplayer-2.X.ngql,nebula-console测试语句
2025-01-14
购票管理系统,SpringBoot3 + Java17 + SpringCloud Alibaba + Vue3 等技术架构
2024-12-10
请根据提示描述你遇到的问题
2025-02-19
TA创建的收藏夹 TA关注的收藏夹
TA关注的人