线段树应用:
有一个数列,初始时为 a1,a2,… aN (N<=10^5) 。现在要给这个数列支持如下三种操作( 操作数 Q<=10^5) :
1) 将 ai 的值加上 val ;
2) 对于一个区间[l,r],该区间的和。
3) 对于一个区间[l,r],求该区间的最大值。
数据结构:
//Node Type
struct Node{
int left, right;
int max, sum;
} tree[maxn];
/*
tree[k]'s left child is tree[2*k],
right child is tree[2*k+1];
*/
步骤一:建树
//Step 1: bulid
void build(int l, int r, int k)
{
tree[k].left = l; tree[k].right = r;
if(l == r){
tree[k].sum = tree[k].max = arr[l];
return;
}
int mid = (l + r) / 2;
build(l, mid, 2 * k);
build(mid + 1, r, 2 * k + 1);
tree[k].sum = tree[2*k].sum + tree[2*k+1].sum;
tree[k].max = max(tree[2*k].max, tree[2*k+1].max);
}
步骤二:更新
//Step 2: update
void update(int pos, int val, int k)
{
if(tree[k].left == tree[k].right){
tree[k].max = (tree[k].sum += val);
return;
}
int mid = (tree[k].left + tree[k].right) / 2;
if(pos <= mid) update(pos, val, 2 * k);
else update(pos, val, 2 * k + 1);
tree[k].sum = tree[2*k].sum + tree[2*k+1].sum;
tree[k].max = max(tree[2*k].max, tree[2*k+1].max);
}
步骤三:查询
//Step 3: query
int query(int l, int r, int k)
{
if(tree[k].left == tree[k].right)
return tree[k].sum; //or tree[k].max;
int mid = (tree[k].left + tree[k].right) / 2;
if(r <= mid) return query(l, r, 2 * k);
else if(l > mid) return query(l, r, 2 * k + 1);
return query(l, mid, 2*k) + query(mid+1, r, 2*k+1);
}