深度学习
change_xzt
心态、努力、坚持!
展开
-
TypeError: sum() received an invalid combination of arguments - got (axis=NoneType, out=NoneType, ),
你可以用 torch.device(“cuda:0”) 来尝试分配你的模型和数据到一个特定的GPU。它似乎接收到了一个 PyTorch tensor,但 numpy 的函数并不支持直接处理 PyTorch tensor。①先检查CUDA版本:请确保你正在使用的 CUDA 版本与你的 pytorch 版本兼容。④检查系统资源:如果你运行了一些占用大量GPU资源的程序,可能会影响到这个代码的运行。⑤重启:最后,如果上述操作都不起作用,尝试重新启动机器。有时候,这个简单的操作能够解决许多看似复杂的问题。原创 2023-11-23 15:22:53 · 1309 阅读 · 0 评论 -
深度学习中higher-order interactions(高阶交互)和contextual information(上下文信息)是什么意思?
它强调了数据之间的相关性和相互作用,并将数据的理解和解释放在特定的背景中。例如,在自然语言处理任务中,上下文信息可以是前后文的文本内容,以便更准确地理解当前的词语或句子。高阶交互指的是多个特征之间的复杂相互作用,它强调了特征之间的非线性关系,并且通过使用深度学习模型可以更好地捕捉这些关系。综上所述,高阶交互和上下文信息在深度学习中具有相似的意义,都强调了数据之间的相关性和复杂的相互作用,但它们着重点略有不同。高阶交互强调特征之间的非线性关系,而上下文信息强调数据的背景和环境。原创 2023-11-04 20:07:07 · 625 阅读 · 0 评论 -
高级特征和低级特征之间的语义鸿沟(semantic gap)是什么?
语义鸿沟的问题在于,尽管高级特征对于理解图像中的语义信息非常重要,但与低级特征相比,它们的表示更加抽象和难以解释。例如,计算机可能可以检测到图像中的一些边缘和纹理(低级特征),但它们可能无法完全理解这些边缘和纹理是哪种物体的一部分,或它们如何与整个场景相关联(高级特征)。而克服高级特征和低级特征之间的语义鸿沟也是深度学习和计算机视觉研究的一个重要目标,包括构建更强大的模型来捕捉这些特征之间的关系,以及开发用于解释和可视化深度学习模型的工具。在计算机视觉中,低级特征可能包括边缘、颜色、纹理等基本信息。原创 2023-10-22 19:51:29 · 1876 阅读 · 0 评论 -
深度学习中经常出现的local context和global context分别指什么?
这样的操作可以将整个特征图(feature map)的信息聚合为一个单一的值或特征向量,该值或向量携带了整个图像的全局特征。多目标情境:在多目标检测任务中,全局上下文有助于模型区分不同目标之间的关系,例如它们之间的相对位置和分布。模型可以更容易地识别目标的细节和边界。噪声抵抗:局部上下文可以帮助模型抵抗图像中的噪声和干扰,因为它主要关注感兴趣区域的信息,而不容易受到图像背景或其他物体的影响。特定目标问题:对于特定目标的检测,全局上下文可能包含大量不相关信息,这可能会导致模型的混淆或低效性。原创 2023-10-08 15:00:19 · 1786 阅读 · 0 评论 -
高级上下文语义(high-level contextual semantics)
综合来说,高级上下文语义在图像处理中的目标检测任务中指的是对图像内容的深层次理解,不仅仅局限于简单的目标位置检测,还包括了目标的类别、关系、场景等方面的信息。这包括了理解物体之间的相对位置、连接和交互关系。高级上下文语义包括了对图像中各个物体的语义理解。这意味着不仅仅是检测目标的位置,还要知道这些目标是什么,例如识别出是猫、狗、汽车等物体类别。这意味着能够识别出图像中可能存在的场景或背景信息,例如在室内、户外、城市或乡村等环境中。对于视频目标检测任务,高级上下文也可能包括对目标在时间上的变化和运动的理解。原创 2023-09-17 11:01:01 · 210 阅读 · 0 评论 -
卷积神经网络倾向于通过纹理信息来识别目标吗
综上所述,CNNs的成功在于其多层次、多尺度的特征提取和学习能力,使其能够综合利用不同类型的信息来识别目标。虽然纹理信息对于一些任务和场景可能很重要,但CNNs的目标是自动从数据中学习适合任务的特征表示,这包括边缘、形状、颜色、对比度、位置、语义等多种特征。纹理信息:纹理信息可以是识别任务的重要组成部分之一,特别是在一些场景中,例如纹理强烈区分不同类别的情况下,CNNs可能会利用纹理特征来识别目标。上下文信息:CNNs还可以利用图像中的上下文信息,例如物体之间的相对位置关系,以帮助识别目标。原创 2023-09-16 16:43:39 · 107 阅读 · 0 评论 -
空间注意力机制
这种学习是间接的,通过网络内部的参数调整,而不是通过损失函数的直接约束。例如,在目标检测中,当前任务可能是检测目标的位置和类别,因此注意力机制可能会学习关注与目标相关的特征。空间注意力机制的学习过程是通过反向传播(backpropagation)和损失函数来实现的,但不是通过损失函数的直接约束来学习每个像素点的重要性权重。在注意力机制的层,通常会有一个权重计算操作,该操作会对前一层的特征图中的每个像素点或特征位置计算相应的权重。计算得到的权重会应用到前一层的特征图上,通过加权汇总的方式来生成最终的输出。原创 2023-09-15 20:29:02 · 568 阅读 · 0 评论 -
图像分割中常见的一些问题
为了应对这些问题,研究人员不断提出新的算法和技术,包括深度学习方法、多模态信息融合等。同时,数据增强、迁移学习和半监督学习等方法也被用于提高分割算法的鲁棒性和泛化能力。原创 2023-08-28 20:23:32 · 781 阅读 · 0 评论 -
深度学习中数据集收集:收集户外数据集所需考虑的几大因素
当我们在收集一个户外数据集时,我们应当尽可能多的采集不同场景的图像来让我们训练的模型拥有更强的泛化能力。一般我们会从以下几个方面来进行考虑。大家都知道,深度学习受数据的影响很大,一个好的数据集可能会使得我们得到一个较好的模型,因此,在我们收集或者制作一个数据集时,我们要尽量多的考虑一些影响因素。ps:期待大家继续补充哈!原创 2023-03-19 21:37:50 · 356 阅读 · 0 评论 -
Anaconda中对虚拟环境进行查看、创建、激活、退出等操作
Anaconda中查看、激活、退出和创建新的虚拟环境等入门级简单操作。原创 2023-03-13 20:22:34 · 4960 阅读 · 1 评论