李宗盛经典歌曲全集

《寂寞难耐》词曲 李宗盛 唱 李宗盛
《爱的代价》词曲 李宗盛 唱 李宗盛
《我是真的爱你》词曲 李宗盛 唱 李宗盛
《你像个孩子》词曲 李宗盛 唱 李宗盛
《我有话要说》词曲 李宗盛 唱 李宗盛  
《十七岁女生的温柔》词曲 李宗盛 唱 李宗盛
《和自己赛跑的人》词曲 李宗盛 唱 李宗盛
《听见有人叫你宝贝》词曲 李宗盛 唱 李宗盛
《生命中的精灵》词曲 李宗盛 唱 李宗盛  
《鬼迷心窍》词曲 李宗盛 唱 李宗盛
《凡人歌》词曲 李宗盛 唱 李宗盛
《希望》词曲 李宗盛 唱 李宗盛
《远行》词曲 李宗盛 唱 李宗盛
《风柜来的人》词曲 李宗盛 唱 李宗盛
《小镇医生的故事》词曲 李宗盛 唱 李宗盛
《油麻菜籽》词曲 李宗盛 唱 李宗盛(蔡琴)
《飞》词 三毛 曲 李宗盛 唱 李宗盛
《因为寂寞》词曲 李宗盛 唱 张艾嘉
《当爱已成往事》词曲 李宗盛 唱 李宗盛&林忆莲
《阴天》词 李宗盛 曲 李宗盛&周国仪 唱 莫文蔚
《最爱》词曲 李宗盛 唱 张艾嘉(潘越云)
《飘洋过海来看你》词曲 李宗盛 唱 娃娃
《问》词曲 李宗盛 唱 陈淑桦
《诱惑的街》词曲 李宗盛 唱 林忆莲
《一夜长大》词 李宗盛 曲 许华强 唱 梁静茹
《伤心地铁》词 李宗盛 曲 光良 唱 光良
《两个女孩》词 李宗盛 曲 小柯 唱 陈淑桦
《当爱在靠近》词 李宗盛、潘协庆 曲 潘协庆 唱 刘若英
《我一个人住》词 陈家丽 曲 李宗盛 唱 苏慧伦
《领悟》词曲 李宗盛 唱 辛晓琪
《仿佛是昨天》词曲 李宗盛 唱 赵传&辛晓琪
《希望你会懂》词曲 李宗盛 唱 张震岳&苏慧伦
《我明白》词曲 李宗盛 唱 李宗盛&林忆莲
《伤痕》词曲 李宗盛 唱 林忆莲
《想逃》词曲 李宗盛 唱 张艾嘉&梁家辉
《在我生命中的每一天》词曲 李宗盛 唱 成龙&苏慧伦
《明明白白我的心》词曲 李宗盛 唱 成龙&陈淑桦
《真心英雄》词曲 李宗盛 唱 李宗盛、成龙、周华健、黄耀明
《最近比较烦》词曲 李宗盛、周华健、品冠 (李华冠) 唱 李宗盛、周华健、品冠
《为你我受冷风吹》词曲 李宗盛 唱 林忆莲
《不必在乎我是谁》词曲 李宗盛 唱 林忆莲
《铿锵玫瑰》词 李宗盛 曲 林忆莲 唱 林忆莲
《夜太黑》词 李宗盛 曲 周国仪 唱 林忆莲
《你走你的路》词曲 李宗盛 唱 李宗盛&陈淑桦
《大地之歌》词曲 李宗盛 唱 滚石群星
《十二楼》词曲 李宗盛 唱 莫文蔚
《爱情有什么道理》词曲 李宗盛 唱 李宗盛&张艾嘉
《快乐天堂》词曲 李宗盛 唱 滚石群星
《让我欢喜让我忧》词 李宗盛 曲 RYO A SKA
《梦醒时分》词曲 李宗盛 唱 陈淑桦
《旧爱新欢》词曲 李宗盛 唱 李宗盛&潘越云
《别怕我伤心》词曲 李宗盛 唱 张信哲
《爱如潮水》词 李宗盛 曲 黎沸挥 唱 张信哲
《爱不留》词 李宗盛 曲 张佑奇 唱 张信哲
《我是一只小小鸟》词曲 李宗盛 唱 赵传
《爱要怎么说出口》词曲 李宗盛 唱 赵传
《阿宗三件事》词曲 李宗盛 唱 李宗盛
《遇见另一个自己》词曲 李宗盛 李宗盛&莫文蔚
《那么爱你为什么》词 李宗盛 曲 AHM JEUNG HUM 唱 黄品源&莫文蔚
《给你幸福》词 李宗盛&潘协庆 曲 潘协庆 唱 任贤齐
《野爱》词 李宗盛 曲 张亚东 唱 王婧
《爱情少尉》词曲 李宗盛 唱 李宗盛
《忙与盲》词曲 李宗盛 唱 李宗盛(周华健)(张艾嘉)
《这样爱你对不对》词曲 李宗盛 唱 陈淑桦
《我的未来,我的家,我的妻》词曲 李宗盛 唱 李宗盛
《一个人》词曲 李宗盛 唱 李宗盛
《如果你要离去》词曲 李宗盛 唱 李宗盛
《开场白》词曲 李宗盛 唱 李宗盛
《不懂》词曲 李宗盛 唱 李宗盛
《为自己鼓掌》词曲 李宗盛 唱 滚石群星
《锁上记忆》词曲 李宗盛 唱 潘越云
《我只为你美丽》词曲 李宗盛 唱 陈淑桦
《让我忘记你的脸》词曲 李宗盛 唱 张信哲
《壮志在我胸》词曲 李宗盛 唱 成龙
《笑红尘》词曲 李宗盛 唱 陈淑桦
《爱似流星》词曲 李宗盛 唱 杨紫琼
《快乐似神仙》词曲 李宗盛 唱 赵传
《爱的进行式》词曲 李宗盛 唱 陈淑桦
《有没有那么一首歌会让你想起我》 词 李宗盛、李焯雄 曲 周传雄 唱 周华健
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
好的,以下是使用 Python 爬取豆瓣音乐排行榜数据并进行分析和可视化的代码示例: ```python import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # 定义爬取排行榜数据的函数 def get_music_rank(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') ranks = soup.find_all('span', class_='ranking_num') titles = soup.find_all('div', class_='pl2') artists = soup.find_all('p', class_='pl') ratings = soup.find_all('span', class_='rating_nums') ranks_list = [rank.get_text().strip() for rank in ranks] titles_list = [title.a.get_text().strip() for title in titles] artists_list = [artist.get_text().strip() for artist in artists] ratings_list = [rating.get_text().strip() for rating in ratings] data = {'Ranking': ranks_list, 'Title': titles_list, 'Artist': artists_list, 'Rating': ratings_list} return pd.DataFrame(data) # 爬取豆瓣音乐排行榜前 250 条数据 url = 'https://music.douban.com/chart' df = get_music_rank(url)[:250] # 统计音乐类型分布情况 def get_music_genre(artist): if '华语' in artist: return '华语' elif '欧美' in artist: return '欧美' elif '日本' in artist: return '日本' elif '韩国' in artist: return '韩国' else: return '其他' df['Genre'] = df['Artist'].apply(get_music_genre) genre_counts = df['Genre'].value_counts() # 绘制音乐类型分布图 plt.figure(figsize=(8, 6)) plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%') plt.title('Music Genre Distribution') plt.show() # 统计华语流行音乐中歌手的排名情况 chinese_pop = df[df['Genre'] == '华语'].reset_index(drop=True) chinese_pop_artists = ['陈奕迅', '周杰伦', '林忆莲', '王菲', '张学友', '张惠妹', '邓紫棋', '薛之谦', '李宗盛', '萧敬腾'] top_artists = chinese_pop[chinese_pop['Artist'].isin(chinese_pop_artists)].reset_index(drop=True) # 绘制华语流行音乐中歌手的排名图 plt.figure(figsize=(10, 6)) sns.barplot(x='Ranking', y='Artist', data=top_artists, palette='plasma') plt.title('Top Artists in Chinese Pop Music') plt.xlabel('Ranking') plt.ylabel('Artist') plt.show() # 统计歌曲热门度分布情况 def get_popularity(title): if '新' in title: return '新歌' elif '热' in title: return '热门歌曲' else: return '其他' df['Popularity'] = df['Title'].apply(get_popularity) popularity_counts = df['Popularity'].value_counts() # 绘制歌曲热门度分布图 plt.figure(figsize=(8, 6)) plt.pie(popularity_counts, labels=popularity_counts.index, autopct='%1.1f%%') plt.title('Song Popularity Distribution') plt.show() # 统计评分最高的歌曲情况 df['Rating'] = df['Rating'].astype(float) top_rated_songs = df[df['Rating'] == df['Rating'].max()].reset_index(drop=True) # 绘制评分最高的歌曲图 plt.figure(figsize=(10, 6)) sns.barplot(x='Title', y='Rating', data=top_rated_songs, palette='plasma') plt.title('Top Rated Songs') plt.xlabel('Song Title') plt.ylabel('Rating') plt.xticks(rotation=45, ha='right') plt.show() ``` 以上代码中,我们首先定义了一个 `get_music_rank()` 函数,用于爬取豆瓣音乐排行榜数据。然后,我们使用该函数爬取了豆瓣音乐排行榜前 250 条数据,并对数据进行了整理和预处理。接着,我们使用了 pandas、matplotlib 和 seaborn 等库对数据进行了分析和可视化,得出了音乐类型分布情况、华语流行音乐中歌手的排名情况、歌曲热门度分布情况和评分最高的歌曲情况等结论。最后,我们使用 matplotlib 和 seaborn 等库绘制了相应的图表,以便更好地展示数据的分布情况和趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风口猪炒股指标

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值