题目描述:
现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。
输入描述:
第一行m表示有m组测试数据
每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。
输出描述:
输出所用装置的个数
样例输入:
2
5
2 3.2 4 4.5 6
10
1 2 3 1 2 1.2 3 1.1 1 2
样例输出:
2
5
想法:
既然分类是贪心,那肯定也是贪心算法,分为直径大于2(半径大于1)和直径小于等于2的情况来处理
实在是想不起来小于1的怎么处理,看看别的博客说,小于等于1的完全没用,问题是真的没用吗?
这个题暂时按照小于等于1做没用处理
代码实现
#include<iostream>
#include<math.h>
//#include<algorithm> 南阳理工oj不支持algorithm,编译错误
using namespace std;
int main()
{
int m; //m个测试数据
cin >> m;
for (int i = 0; i < m; i++)
{
int n; //n表示n个喷水装置
double length = 20; //草地长度20
cin >> n;
double Ri[600]; //喷水装置最多600个
for (int j = 0; j < n; j++)
{
cin >> Ri[j];
}
for (int i = 0; i<n - 1; i++) //冒泡,从小到大
for (int j = i + 1; j<n; j++)
{
if (Ri[i]>Ri[j])
swap(Ri[i], Ri[j]);
}
for (int k = n - 1; k >= 0; k--)
{
if (Ri[k] >= 1) //圆的直径作为斜边长时,覆盖的面积最大
{
length -= 2 * sqrt(Ri[k] * Ri[k] - 1);//能湿润的长度
}
if (length <= 0)//结束条件
{
cout << n - k << endl;
break;
}
}
}
return 0;
}