、java.util.LinkedList<E>
当我们创建一个LinkedList类的对象,并且试图增加一个新的元素的时候,到底是如何组织我们传进去的数据的呢?
- //创建一个LinkedList类型的对象
- java.util.LinkedList<String> l=new java.util.LinkedList<String>();
- l.add(e);//e为E类的对象
//创建一个LinkedList类型的对象
java.util.LinkedList<String> l=new java.util.LinkedList<String>();
l.add(e);//e为E类的对象
打开add方法的源码看看:
- public boolean add(E e) {
- //调用LinkedList的私有方法
- //header是LinkedList中的一个属性,这样定义的private transient Entry<E> //header = new Entry<E>(null, null, null);
- addBefore(e, header);
- return true;
- }
- //被调用的私有方法
- private Entry<E> addBefore(E e, Entry<E> entry) {
- Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
- newEntry.previous.next = newEntry;
- newEntry.next.previous = newEntry;
- size++;
- modCount++;
- return newEntry;
- }
- //Entry<E>是LinkedList的内部类,包装每一个E类型的对象e,形成一个链表
- private static class Entry<E> {
- E element;
- Entry<E> next;
- Entry<E> previous;
- Entry(E element, Entry<E> next, Entry<E> previous) {
- this.element = element;
- this.next = next;
- this.previous = previous;
- }
- }
public boolean add(E e) {
//调用LinkedList的私有方法
//header是LinkedList中的一个属性,这样定义的private transient Entry<E> //header = new Entry<E>(null, null, null);
addBefore(e, header);
return true;
}
//被调用的私有方法
private Entry<E> addBefore(E e, Entry<E> entry) {
Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
size++;
modCount++;
return newEntry;
}
//Entry<E>是LinkedList的内部类,包装每一个E类型的对象e,形成一个链表
private static class Entry<E> {
E element;
Entry<E> next;
Entry<E> previous;
Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}
我们惊喜的发现,原来就是把我们传去的e对象包装成了Entry<E>,然后通过Entry<E>的next和previous两个属性形成了一个以包装后的e对象(即Entry<E>)为节点的双向链表。
于是我们彻底明白了LinkedList果然名副其实,就是一个链表嘛!
-----------------------------------------------------------------------------------------------------
2、java.util.ArrayList<E>
我们看看在ArrayList对象调用add();方法时,底层到底是如何执行的
- public boolean add(E e) {
- ensureCapacity(size + 1); // size是ArrayList中元素的个数
- elementData[size++] = e; //在调整后的elementData末尾加入新的元素
- return true;
- }
- public void ensureCapacity(int minCapacity) {
- modCount++;
- //elementData就是ArrayList中一个数组类型的属性,用来放进去的元素: //Object[] elementData
- int oldCapacity = elementData.length;
- if (minCapacity > oldCapacity) {//原来的elementData空间不够用了!
- Object oldData[] = elementData;
- int newCapacity = (oldCapacity * 3)/2 + 1;
- //如果通过oldCapacity 计算出的新空间依然不够用
- if (newCapacity < minCapacity)
- newCapacity = minCapacity;
- // minCapacity is usually close to size, so this is a win:
- //这一步最后会调用System.arraycopy(original, 0, copy, 0,
- Math.min(original.length, newLength));
- //来实现将所有的元素copy到长度更大的数组中,这一步将很费时间
- elementData = Arrays.copyOf(elementData, newCapacity);
- }
- }
public boolean add(E e) {
ensureCapacity(size + 1); // size是ArrayList中元素的个数
elementData[size++] = e; //在调整后的elementData末尾加入新的元素
return true;
}
public void ensureCapacity(int minCapacity) {
modCount++;
//elementData就是ArrayList中一个数组类型的属性,用来放进去的元素: //Object[] elementData
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {//原来的elementData空间不够用了!
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
//如果通过oldCapacity 计算出的新空间依然不够用
if (newCapacity < minCapacity)
newCapacity = minCapacity;
// minCapacity is usually close to size, so this is a win:
//这一步最后会调用System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
//来实现将所有的元素copy到长度更大的数组中,这一步将很费时间
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
于是我们发现:原来ArrayList也是如名字说的,用Array组织数据。不过它内部定义的那个调整elementData数组的方法copy太多,显然当数据量大的时候,性能不会很好。
-----------------------------------------------------------------------------------------------------
3、java.util.HashMap<K,V>
- //向HashMap中插入键值对
- public V put(K key, V value) {
- if (key == null) //如果没有输入的key是null值
- return putForNullKey(value);//插在Entry[0]的第一个,返回null
- //获得哈希码
- //1、首先用key类定义的hashcode()方法计算得到一个int
- //2、进行一些>>>和^的操作
- int hash = hash(key.hashCode());
- //通过&运算将hash按二进制位取反(1变为0,0变为1)
- //得到要插入的元素在table中的index
- int i = indexFor(hash, table.length);
- //遍历table[i]数据元下拖带的一个链表的所有元素
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- //如果有一个已经存在的元素的哈希码"=="为true,
- //并且key值"=="或者"equals"为true
- //也就是所谓的key经过hashcode()的一系列运算和
- //equals()的一系列运算相同的元素,就替换原来的value
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- //把原来在table[i]位置的元素挤到Entry<K,V>的next位置
- addEntry(hash, key, value, i);
- return null;
- }
- }
//向HashMap中插入键值对
public V put(K key, V value) {
if (key == null) //如果没有输入的key是null值
return putForNullKey(value);//插在Entry[0]的第一个,返回null
//获得哈希码
//1、首先用key类定义的hashcode()方法计算得到一个int
//2、进行一些>>>和^的操作
int hash = hash(key.hashCode());
//通过&运算将hash按二进制位取反(1变为0,0变为1)
//得到要插入的元素在table中的index
int i = indexFor(hash, table.length);
//遍历table[i]数据元下拖带的一个链表的所有元素
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//如果有一个已经存在的元素的哈希码"=="为true,
//并且key值"=="或者"equals"为true
//也就是所谓的key经过hashcode()的一系列运算和
//equals()的一系列运算相同的元素,就替换原来的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//把原来在table[i]位置的元素挤到Entry<K,V>的next位置
addEntry(hash, key, value, i);
return null;
}
}
想必大家看这段代码都看到晕了吧,为了让大家能够更加形象的人知道HashMap对数据的的组织形式,上了一个HaspMap数据结构图:
这里解释一下,这个图的最左边的一些就是上面源码中的table也就是HashMap的一个属性Entry[] table。将一个新的键值对插入需要经过这几步:
---给key值计算哈码(计算在这一步int hash = hash(key.hashCode());),
---得出在table数组的中index:int i = indexFor(hash, table.
length);
---将键值对插入index确定的上图所示的一个横向的链表中。如果在这个链表中有要插入的pair的key经过hashcode()的一系列运算和equals()的一系列运算相同的元素,就替换原来的value。(这也就是我们自己定义的类要用到HashMap存储的时候,必须重写hashcode()和equals()方法,并且要保证对同一对象两个方法计算结果要相同的原因。因为如果不相同,在一个同一对象为key插入值的时候就不会像你期望的那样后插入的value覆盖前面的value了,而是会重新开辟一个空间存储)
于是,到这里我们明白了,原来HashMap就是通过散列表这种数据结构组织数据的!
-----------------------------------------------------------------------------------------------------
4、java.util.HashSet<E>
- public boolean add(E e) {
- //map是该类的一个属性,这样定义的:HashMap<E,Object> map
- //这里e作为key了
- //value用本类的属性代替private static final Object PRESENT = new Object();每个键值对都相同
- return map.put(e, PRESENT)==null;
- }
public boolean add(E e) {
//map是该类的一个属性,这样定义的:HashMap<E,Object> map
//这里e作为key了
//value用本类的属性代替private static final Object PRESENT = new Object();每个键值对都相同
return map.put(e, PRESENT)==null;
}
小样直接自己不解决,抛给HashMap类的put()方法,也就是用一个散列表存数据。详解见第三条对HashMap的讲解
-----------------------------------------------------------------------------------------------------
5、java.util.TreeMap<E>
- public V put(K key, V value) {
- Entry<K,V> t = root;//root是整棵树的根节点
- if (t == null) {
- //插入的第一个元素会成为根节点
- root = new Entry<K,V>(key, value, null);
- size = 1;
- modCount++;
- return null;
- }
- int cmp;
- Entry<K,V> parent;
- // 调用Comparator的compare()方法确定新加的元素出现的位置。
- //我们可以再自己定义的类中实现Comparator接口,然后传给树集的构造器。从而按照自己定义的不同的比较规则来给整个树的数据进行排序。
- Comparator<? super K> cpr = comparator;
- if (cpr != null) {
- do {
- parent = t;
- cmp = cpr.compare(key, t.key);
- if (cmp < 0)
- t = t.left;
- else if (cmp > 0)
- t = t.right;
- else
- return t.setValue(value);
- } while (t != null);
- }
- else {
- if (key == null)
- throw new NullPointerException();
- Comparable<? super K> k = (Comparable<? super K>) key;
- do {
- parent = t;
- cmp = k.compareTo(t.key);
- if (cmp < 0)
- t = t.left;
- else if (cmp > 0)
- t = t.right;
- else
- return t.setValue(value);
- } while (t != null);
- }
- //这里我们将传进来的数据包装成Entry<K,V> ,通过Entry<K,V> 内部类的//属性 Entry<K,V> parent来组织一棵树
- Entry<K,V> e = new Entry<K,V>(key, value, parent);
- if (cmp < 0)
- parent.left = e;
- else
- parent.right = e;
- fixAfterInsertion(e);
- size++;
- modCount++;
- return null;
- }
public V put(K key, V value) {
Entry<K,V> t = root;//root是整棵树的根节点
if (t == null) {
//插入的第一个元素会成为根节点
root = new Entry<K,V>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// 调用Comparator的compare()方法确定新加的元素出现的位置。
//我们可以再自己定义的类中实现Comparator接口,然后传给树集的构造器。从而按照自己定义的不同的比较规则来给整个树的数据进行排序。
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
//这里我们将传进来的数据包装成Entry<K,V> ,通过Entry<K,V> 内部类的//属性 Entry<K,V> parent来组织一棵树
Entry<K,V> e = new Entry<K,V>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
我们又可以开心的大笑了,原来就是如此简单,就是按照一定的规律形成一棵二叉树来存数据。
大笑过后,我们再次静下心来观察,源码中出现了这样一句:k.compareTo(t.key);是说用key对应的类中实现的compareTo()方法来判断两个key的先后顺序。有若干标准的java平台类都实现了Compatable接口(Compatator可以自己定义不同的比较规则,不过这个接口的比较规则只有一个,是定义key的类的时候定义的,没有可变性),如String类:
- //用字典式排序。不展开分析了。
- public int compareTo(String anotherString) {
- int len1 = count;
- int len2 = anotherString.count;
- int n = Math.min(len1, len2);
- char v1[] = value;
- char v2[] = anotherString.value;
- int i = offset;
- int j = anotherString.offset;
- if (i == j) {
- int k = i;
- int lim = n + i;
- while (k < lim) {
- char c1 = v1[k];
- char c2 = v2[k];
- if (c1 != c2) {
- return c1 - c2;
- }
- k++;
- }
- } else {
- while (n-- != 0) {
- char c1 = v1[i++];
- char c2 = v2[j++];
- if (c1 != c2) {
- return c1 - c2;
- }
- }
- }
- return len1 - len2;
- }
//用字典式排序。不展开分析了。
public int compareTo(String anotherString) {
int len1 = count;
int len2 = anotherString.count;
int n = Math.min(len1, len2);
char v1[] = value;
char v2[] = anotherString.value;
int i = offset;
int j = anotherString.offset;
if (i == j) {
int k = i;
int lim = n + i;
while (k < lim) {
char c1 = v1[k];
char c2 = v2[k];
if (c1 != c2) {
return c1 - c2;
}
k++;
}
} else {
while (n-- != 0) {
char c1 = v1[i++];
char c2 = v2[j++];
if (c1 != c2) {
return c1 - c2;
}
}
}
return len1 - len2;
}
所以,我们自己定义key的类的时候,要特别注意compareTo()方法中算法的选择,以便有一个最好的插入、查找、遍历的性能。一般而言将元素添加到树集的速度快于数组和链表,慢于散列表(素服比较:数组、链表<树集<散列表)。
-----------------------------------------------------------------------------------------------------
6、java.util.TreeSet<E>
- public boolean add(E e) {
- return m.put(e, PRESENT)==null;
- }
public boolean add(E e) {
return m.put(e, PRESENT)==null;
}
相信大家看到源码立马就能明白了吧,向HashSet一样TreeSet也偷懒了(至于为什么要偷懒,感兴趣的朋友可以去研究,这里不展开了),也是用二叉树的结构存数据,不多说!
-----------------------------------------------------------------------------------------------------
7、java.util.PriorityQueue<E>
(这一条有错,详解见附)
- public boolean add(E e) {
- return offer(e);
- }
- public boolean offer(E e) {
- if (e == null)
- throw new NullPointerException();
- modCount++;
- int i = size;
- if (i >= queue.length)//属性:Object[] queue
- grow(i + 1);
- size = i + 1;
- if (i == 0)
- queue[0] = e;
- else
- siftUp(i, e);
- return true;
- }
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)//属性:Object[] queue
grow(i + 1);
size = i + 1;
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
一看就明白,就是通过数组组织数据。不过喜欢刨根问底的朋友又会提出一个问题了:
既然和ArrayList一样都是数组组织数据,那干嘛还要存在这个类呢?
问的好!继续看:
PriorityQueue类在数组满了的时候(代码为i >= queue.length),就调用grow(i + 1)这个方法来调整queue的长度。具体调整的算法如下
- private void grow(int minCapacity) {
- if (minCapacity < 0) // overflow
- throw new OutOfMemoryError();
- int oldCapacity = queue.length;
- // Double size if small; else grow by 50%
- int newCapacity = ((oldCapacity < 64)?
- ((oldCapacity + 1) * 2):
- ((oldCapacity / 2) * 3));
- if (newCapacity < 0) // overflow
- newCapacity = Integer.MAX_VALUE;
- if (newCapacity < minCapacity)
- newCapacity = minCapacity;
- queue = Arrays.copyOf(queue, newCapacity);
- }
private void grow(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
int newCapacity = ((oldCapacity < 64)?
((oldCapacity + 1) * 2):
((oldCapacity / 2) * 3));
if (newCapacity < 0) // overflow
newCapacity = Integer.MAX_VALUE;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
queue = Arrays.copyOf(queue, newCapacity);
}
而ArrayList一上来就调用方法调整了:ensureCapacity(size + 1);里面的具体算法这里就不列出来了。两个类调整的算法不同。这就造成了两者性能上差别。
tip:好了,今天就分析道这里了。进一步的研究,等过段时间才能出来,到时候再贴出来。时间仓促,难免有漏洞,大家多提意见。
另外抱怨一下JE的编辑器,真不好用,害得我重新录入!
纠错:感谢大家能及时反馈给我一些有用的信息,就不一一回复了。就不在原来的文章里改错了,把错误的纠正全写在这后面了,再次感谢!
-----------------------------------------------------------------------------------------------------
PriorityQueue<E>重新写了一份:
我们看看调用add()方法在底层到底发生了什么事情!
- public boolean add(E e) {
- return offer(e);
- }
- public boolean offer(E e) {
- //前面这的几行无非就是判断非空,判断本类的属性queue的长度是否够用然后做相应调整
- if (e == null)
- throw new NullPointerException();
- modCount++;
- int i = size;
- if (i >= queue.length)
- grow(i + 1);
- size = i + 1;
- //最后终于要将元素插进去了
- //如果queue空就插在index为0的位置,很好理解
- //否则调用siftUp()方法(第一个参数是the position to fill,第二个参数是the element to insert)
- if (i == 0)
- queue[0] = e;
- else
- siftUp(i, e);
- return true;
- }
- //再来看看siftUp()方法是如何实现的
- //api文档的注释的意思是:将x插入合适的位置保持heap的有序性不变
- //排序标准有两种途径获取:
- //1、在构造PriorityQueue的时候传入的Comparator ,这个优先选用
- //2、 要插入的x自己实现的compareTo方法
- private void siftDown(int k, E x) {
- if (comparator != null)
- siftDownUsingComparator(k, x);
- else
- siftDownComparable(k, x);
- }
- //这里我只需分析comparator的情况就可以了
- private void siftUpUsingComparator(int k, E x) {
- //最坏的情况是:我找了一圈发现x才是整棵树种最小的。这时k为0,也就是到达整个堆的最小的元素(或者整棵树的根节点),停止循环。
- while (k > 0) {
- //第一句的意思是获得要插入的这个k位置在queue中对应的父元素的索引
- //我可以告诉大家这个式子的计算结果是:queue[n]节点的子节点是queue[2*n+1]和queue[2*(n+1)]
- int parent = (k - 1) >>> 1;
- Object e = queue[parent];
- //如果比较规则确定x"大于"父节点,就插在k位置了,跳出循环
- if (comparator.compare(x, (E) e) >= 0)
- break;
- //如果发现x较小,就将父节点的元素移到这个k位置
- queue[k] = e;
- k = parent;//现在要插入的位置变为原来父节点的位置
- }
- queue[k] = x;//
- }
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
//前面这的几行无非就是判断非空,判断本类的属性queue的长度是否够用然后做相应调整
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
//最后终于要将元素插进去了
//如果queue空就插在index为0的位置,很好理解
//否则调用siftUp()方法(第一个参数是the position to fill,第二个参数是the element to insert)
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
//再来看看siftUp()方法是如何实现的
//api文档的注释的意思是:将x插入合适的位置保持heap的有序性不变
//排序标准有两种途径获取:
//1、在构造PriorityQueue的时候传入的Comparator ,这个优先选用
//2、 要插入的x自己实现的compareTo方法
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
//这里我只需分析comparator的情况就可以了
private void siftUpUsingComparator(int k, E x) {
//最坏的情况是:我找了一圈发现x才是整棵树种最小的。这时k为0,也就是到达整个堆的最小的元素(或者整棵树的根节点),停止循环。
while (k > 0) {
//第一句的意思是获得要插入的这个k位置在queue中对应的父元素的索引
//我可以告诉大家这个式子的计算结果是:queue[n]节点的子节点是queue[2*n+1]和queue[2*(n+1)]
int parent = (k - 1) >>> 1;
Object e = queue[parent];
//如果比较规则确定x"大于"父节点,就插在k位置了,跳出循环
if (comparator.compare(x, (E) e) >= 0)
break;
//如果发现x较小,就将父节点的元素移到这个k位置
queue[k] = e;
k = parent;//现在要插入的位置变为原来父节点的位置
}
queue[k] = x;//
}
嗯,这个类用了一种“堆”(逻辑上是二叉树,存储上用数组,树中的元素有大小关系,越小在数组中的index也越小)的数据结构。
典型应用是存储有优先级的任务,因为每次调用remove移除最小的元素(优先级最高的元素),都会自动排序,保证每次移除的都是优先级最高的任务。
同样,TreeMap逻辑上也是通过有序二叉树来组织数据的,不过,TreeMap通过节点的链接来组织存储结构,而PriorityQueue是通过数组的一些列计算确定逻辑上的树的节点的存放位置。