时间复杂度

 

场景1:一条长10寸的面包,小白每3天吃掉1寸,那么吃掉整个面包需要几天?

答案自然是 3 X 10 = 30天。

如果面包的长度变为N 寸呢?此时吃掉整个面包,则需要 3 X n = 3n 天。

如果用一个函数来表达这个相对时间,可以记作 T(n) = 3n。

场景2:给小白一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸......那么小灰把面包吃得只剩下1寸,需要多少天呢?

这个问题翻译一下,就是数字16不断地除以2,除几次以后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。

因此,把面包吃得只剩下1寸,需要 5 X log16 = 5 X 4 = 20 天。

如果面包的长度是 N 寸呢?

需要 5 X logn = 5logn天,记作 T(n) = 5logn。

场景3:给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿需要多少天呢?

答案自然是2天。因为只说是吃掉鸡腿,和10寸的面包没有关系 。

如果面包的长度是 N 寸呢?

无论面包有多长,吃掉鸡腿的时间仍然是2天,记作 T(n) = 2。

场景4:给小灰一条长10寸的面包,小灰吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间.....每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包需要多少天呢?

答案是从1累加到10的总和,也就是55天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。

记作 T(n) = 0.5n^2 + 0.5n。

上面所讲的是吃东西所花费的相对时间,这一思想同样适用于对程序基本操作执行次数的统计。刚才的四个场景,分别对应了程序中最常见的四种执行方式:

场景1:T(n) = 3n,执行次数是线性的。

void eat1(int n){
    for(int i=0; i<n; i++){;
        System.out.println("等待一天");
        System.out.println("等待一天");
        System.out.println("吃一寸面包");
    }
}

场景2:T(n) = 5logn,执行次数是对数的。

void eat2(int n){
   for(int i=1; i<n; i*=2){
       System.out.println("等待一天");
       System.out.println("等待一天");
       System.out.println("等待一天");
       System.out.println("等待一天");
       System.out.println("吃一半面包");
   }
}

场景3:T(n) = 2,执行次数是常量的。

void eat3(int n){
   System.out.println("等待一天");
   System.out.println("吃一个鸡腿");
}

场景4:T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。

void eat4(int n){
   for(int i=0; i<n; i++){
       for(int j=0; j<i; j++){
           System.out.println("等待一天");
       }
       System.out.println("吃一寸面包");
   }
}

有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。

比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

所以,这时候有了渐进时间复杂度(asymptotic time complexity)的概念,官方的定义如下:

若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

记作 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

渐进时间复杂度用大写O来表示,所以也被称为大O表示法

如何推导出时间复杂度呢?有如下几个原则:

  1. 如果运行时间是常数量级,用常数1表示;

  2. 只保留时间函数中的最高阶项;

  3. 如果最高阶项存在,则省去最高阶项前面的系数。

让我们回头看看刚才的四个场景。

场景1:

T(n) = 3n 

最高阶项为3n,省去系数3,转化的时间复杂度为:

T(n) =  O(n)

场景2:

T(n) = 5logn 

最高阶项为5logn,省去系数5,转化的时间复杂度为:

T(n) =  O(logn)

场景3:

T(n) = 2

只有常数量级,转化的时间复杂度为:

T(n) =  O(1)

场景4:

T(n) = 0.5n^2 + 0.5n

最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

T(n) =  O(n^2)

这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

O(1)< O(logn)< O(n)< O(n^2)

在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:

O(nlogn), O(n^3), O(m*n),O(2^n),O(n!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值