强一致性、顺序一致性、弱一致性和共识


1. 一致性(Consistency)

一致性(Consistency)是指多副本(Replications)问题中的数据一致性。可以分为强一致性、顺序一致性与弱一致性。

1.1 强一致性(Strict Consistency)

也称为:

原子一致性(Atomic Consistency)

线性一致性(Linearizable Consistency)

两个要求:

  • 任何一次读都能读到某个数据的最近一次写的数据。
  • 系统中的所有进程,看到的操作顺序,都和全局时钟下的顺序一致。

简言之,在任意时刻,所有节点中的数据是一样的。

例如,对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。

1.2 顺序一致性(Sequential Consistency)

the result of any execution is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order specified by its program. - - Lamport

两个要求:

  • 任何一次读都能读到某个数据的最近一次写的数据。
  • 系统的所有进程的顺序一致,而且是合理的。即不需要和全局时钟下的顺序一致,错的话一起错,对的话一起对。

举个栗子:
这里写图片描述

Write(x, 4):写入x=4
Read(x, 0):读出x=0

1)图a是满足顺序一致性,但是不满足强一致性的。原因在于,从全局时钟的观点来看,P2进程对变量X的读操作在P1进程对变量X的写操作之后,然而读出来的却是旧的数据。但是这个图却是满足顺序一致性的,因为两个进程P1,P2的一致性并没有冲突。从这两个进程的角度来看,顺序应该是这样的:Write(y,2) , Read(x,0) , Write(x,4), Read(y,2),每个进程内部的读写顺序都是合理的,但是这个顺序与全局时钟下看到的顺序并不一样。

2)图b满足强一致性,因为每个读操作都读到了该变量的最新写的结果,同时两个进程看到的操作顺序与全局时钟的顺序一样,都是Write(y,2) , Read(x,4) , Write(x,4), Read(y,2)。

3)图c不满足顺序一致性,当然也就不满足强一致性了。因为从进程P1的角度看,它对变量Y的读操作返回了结果0。那么就是说,P1进程的对变量Y的读操作在P2进程对变量Y的写操作之前,这意味着它认为的顺序是这样的:write(x,4) , Read(y,0) , Write(y,2), Read(x,0),显然这个顺序又是不能被满足的,因为最后一个对变量x的读操作读出来也是旧的数据。因此这个顺序是有冲突的,不满足顺序一致性。

1.3 弱一致性

数据更新后,如果能容忍后续的访问只能访问到部分或者全部访问不到,则是弱一致性。

最终一致性就属于弱一致性。

最终一致性

不保证在任意时刻任意节点上的同一份数据都是相同的,但是随着时间的迁移,不同节点上的同一份数据总是在向趋同的方向变化。

简单说,就是在一段时间后,节点间的数据会最终达到一致状态。

最终一致性根据更新数据后各进程访问到数据的时间和方式的不同,又可以区分为:

  • 因果一致性(Casual Consistency)。如果进程A通知进程B它已更新了一个数据项,那么进程B的后续访问将返回更新后的值,且一次写入将保证取代前一次写入。与进程A无因果关系的进程C的访问,遵守一般的最终一致性规则。
  • “读己之所写(read-your-writes)”一致性。当进程A自己更新一个数据项之后,它总是访问到更新过的值,绝不会看到旧值。这是因果一致性模型的一个特例。
  • 会话(Session)一致性。这是上一个模型的实用版本,它把访问存储系统的进程放到会话的上下文中。只要会话还存在,系统就保证“读己之所写”一致性。如果由于某些失败情形令会话终止,就要建立新的会话,而且系统的保证不会延续到新的会话。
  • 单调(Monotonic)读一致性。如果进程已经看到过数据对象的某个值,那么任何后续访问都不会返回在那个值之前的值。
  • 单调写一致性。系统保证来自同一个进程的写操作顺序执行。要是系统不能保证这种程度的一致性,就非常难以编程了。

2. 共识(Consensus)

共识问题中所有的节点要最终达成共识,由于最终目标是所有节点都要达成一致,所以根本不存在一致性强弱之分。

例如,Paxos是共识(Consensus)算法而不是强一致性(Consistency)协议。共识算法没有一致性级别的区分。

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 18
    点赞
  • 77
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
### 回答1: PBFT(Practical Byzantine Fault Tolerance)共识算法是一种分布式系统中的共识算法,它用于在存在恶意节点的情况下达成一致。在Go语言中,可以使用Go的标准库以及第三方库来实现PBFT共识算法。 具体实现步骤如下: 1. 定义网络中的节点数量以及角色(例如:主节点,从节点)。 2. 实现请求阶段,即请求节点向其他节点发送请求消息。 3. 实现预备阶段,即其他节点对请求消息进行验证,如果足够多的节点同意,则进入下一个阶段。 4. 实现提交阶段,即同意请求的节点向其他节点发送提交消息。 5. 实现确认阶段,即其他节点对提交消息进行验证,如果足够多的节点同意,则完成共识。 实现PBFT共识算法需要对分布式系统和网络通信等方面有较深的了解,如果不熟悉可以先学习相关知识。 ### 回答2: Golang语言可以用于实现PBFT(Practical Byzantine Fault Tolerance)共识算法。PBFT是一种拜占庭容错的共识算法,用于解决分布式系统中节点之间存在错误或恶意行为的问题。 在Golang中,我们可以使用Go语言的并发特性和网络编程模块来实现PBFT。首先,我们需要定义PBFT算法所需的数据结构,包括消息、视图和状态等。然后,编写每个节点的算法逻辑,包括请求处理、视图切换和状态更新等。最后,我们可以使用Golang的并发机制,例如goroutine和通道,来实现节点之间的消息传递和协调。 在PBFT算法中,节点之间通过消息交互来达成共识。在Golang中,我们可以使用标准库提供的网络编程模块,例如net包和rpc包,来实现节点之间的消息通信。通过建立TCP连接或使用HTTP协议,节点可以互相发送消息,并进行验证和处理。 Golang的并发特性使得实现PBFT算法变得相对简单。可以使用goroutine来并行处理消息和请求,提高系统的吞吐量和响应速度。使用通道可以实现节点之间的异步消息传递,确保消息的顺序一致性。 总的来说,使用Golang语言实现PBFT共识算法可以充分发挥Golang的并发特性和网络编程模块的优势。通过合理设计数据结构和算法逻辑,并利用Golang的并发机制,我们可以实现一个高效、可靠的PBFT共识算法。 ### 回答3: Golang语言可以很好地实现PBFT(Practical Byzantine Fault Tolerance)共识算法。PBFT是一种经典的拜占庭容错共识算法,它旨在解决由于网络延迟、节点故障、恶意行为等原因导致的分布式系统存在拜占庭错误的问题。 Golang是一种并发性能优秀的编程语言,它提供了丰富的并发原语和库,非常适合实现高效的分布式系统。以下是使用Golang实现PBFT共识算法的一般步骤: 1. 定义消息结构:在Golang中,可以定义一个结构体来表示PBFT中的消息,包括请求、预准备、准备、提交等阶段的消息类型和字段。 2. 实现节点逻辑:每个PBFT节点都有自己的逻辑,包括接收请求、进行共识阶段、发送和接收消息等。通过使用Golang的协程和通道,可以实现节点之间的并发通信和协作。 3. 实现共识算法:PBFT算法的核心是对每个阶段的消息进行验证和处理,并根据共识规则进行状态转换。在Golang中,可以使用条件变量、锁或原子操作等实现消息处理和状态转换的同步机制。 4. 网络通信:PBFT算法需要节点之间进行网络通信,可以使用Golang的网络库实现节点之间的消息传递。例如,可以使用TCP或UDP套接字进行节点间的消息发送和接收。 5. 启动节点:可以通过运行Golang程序来启动多个PBFT节点,并指定节点间的初始配置和通信地址。 6. 测试和优化:使用Golang的测试框架和工具,可以对PBFT共识算法进行单元测试、压力测试和性能优化,确保其正确性和效率。 总之,Golang语言具有良好的并发性能和丰富的并发原语,适合实现PBFT共识算法。通过合理使用Golang的特性和库,可以实现高效、可靠的分布式共识系统。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chao2016

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值