python多线程操作mysql连接池报AttributeError: 'NoneType' object has no attribute 'read'

近来在看python,然后准备使用python的多线程操作mysql的连接池(使用mysql的连接池效率会更高),先上代码,代码也比较简单,稍微会一点python的人都能看的懂的:

import threading
from DBUtils.PooledDB import PooledDB
import time
import pymysql
lock = threading.Lock()

class MysqlHelper():
   def __init__(self):
      self.__pool = PooledDB(creator=pymysql,
                  mincached=1,
                  maxcached=3,
                  maxconnections=3,
                  blocking=True,
                  user="root",
                  passwd="123456",
                  db="wangchao")

   def getConn(self):
      self.conn = self.__pool.connection()
      self.cursor = self.conn.cursor()

   def dispose(self):
      self.cursor.close()
      self.conn.close()

   def getOne(self, sql):
      self.getConn()
      self.cursor.execute(sql)
      rows = self.cursor.fetchall()
      print(rows)
      self.dispose()

def test1(pool):
   strsql = "select * from csv_test"
   while True:
      #lock.acquire()
      pool.getConn()

      pool.getOne(strsql)
      #lock.release()
      time.sleep(1)


def main(pool):
   for i in range(5):
      threading.Thread(target=test1, args=(pool,)).start()

if __name__ == "__main__":
   mysqlhelper = MysqlHelper()
   main(mysqlhelper)
   while True:
      time.sleep(1)

当时当代码跑起来的时候(我用的是pycharm开发的),一直出错,出现的错误有:

AttributeError: 'NoneType' object has no attribute 'read'

struct.error: unpack_from requires a buffer of at least 8 bytes,已报错线程就直接退出了(当然线程处理函数写的很简单),在网上查了很多资料都是单线程操作mysql连接池的,很少有多线程的例子,直接把错误贴到网上也找不到解决办法。但是看了这博友https://blog.csdn.net/qq_29666899/article/details/82990599的帖子,我试了一下在线程处理函数中,使用连接池先后都加锁(即把红色生效),然后就不会报错了,现在什么原因也不是很清楚,还请路过的大神指点。但是我感觉应该是多线程共享mysql连接池的问题。

 

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值