RNN梯度爆炸原因和LSTM解决梯度消失解释

 

RNN梯度爆炸原因:

经典的RNN结构如下图所示:

 

 

假设我们的时间序列只有三段, S_{0} 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下:

S_{1}=W_{x}X_{1}+W_{s}S_{0}+b_{1}O_{1}=W_{o}S_{1}+b_{2}

S_{2}=W_{x}X_{2}+W_{s}S_{1}+b_{1}O_{2}=W_{o}S_{2}+b_{2}

S_{3}=W_{x}X_{3}+W_{s}S_{2}+b_{1}O_{3}=W_{o}S_{3}+b_{2}

假设在t=3时刻,损失函数为 L_{3}=\frac{1}{2}(Y_{3}-O_{3})^{2}

则对于一次训练任务的损失函数为 L=\sum_{t=0}^{T}{L_{t}} ,即每一时刻损失值的累加。

使用随机梯度下降法训练RNN其实就是对 W_{x}W_{s}W_{o} 以及 b_{1}b_{2} 求偏导,并不断调整它们以使L尽可能达到最小的过程。

现在假设我们我们的时间序列只有三段,t1,t2,t3。

我们只对t3时刻的 W_{x}、W_{s}、W_{0} 求偏导(其他时刻类似):

\frac{\partial{L_{3}}}{\partial{W_{0}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{W_{o}}}

\frac{\partial{L_{3}}}{\partial{W_{x}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{W_{x}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{W_{x}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{S_{1}}}\frac{\partial{S_{1}}}{\partial{W_{x}}}

\frac{\partial{L_{3}}}{\partial{W_{s}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{S_{1}}}\frac{\partial{S_{1}}}{\partial{W_{s}}}

可以看出对于 W_{0} 求偏导并没有长期依赖,但是对于 W_{x}、W_{s} 求偏导,会随着时间序列产生长期依赖。因为 S_{t} 随着时间序列向前传播,而 S_{t} 又是 W_{x}、W_{s}的函数。

根据上述求偏导的过程,我们可以得出任意时刻对 W_{x}、W_{s} 求偏导的公式:

\frac{\partial{L_{t}}}{\partial{W_{x}}}=\sum_{k=0}^{t}{\frac{\partial{L_{t}}}{\partial{O_{t}}}\frac{\partial{O_{t}}}{\partial{S_{t}}}}(\prod_{j=k+1}^{t}{\frac{\partial{S_{j}}}{\partial{S_{j-1}}}})\frac{\partial{S_{k}}}{\partial{W_{x}}}

任意时刻对W_{s} 求偏导的公式同上。

如果加上激活函数, S_{j}=tanh(W_{x}X_{j}+W_{s}S_{j-1}+b_{1})

\prod_{j=k+1}^{t}{\frac{\partial{S_{j}}}{\partial{S_{j-1}}}} = \prod_{j=k+1}^{t}{tanh^{'}}W_{s}

激活函数tanh和它的导数图像如下。

 

由上图可以看出 tanh^{'}\leq1 ,对于训练过程大部分情况下tanh的导数是小于1的,因为很少情况下会出现W_{x}X_{j}+W_{s}S_{j-1}+b_{1}=0 ,如果 W_{s} 也是一个大于0小于1的值,则当t很大时 \prod_{j=k+1}^{t}{tanh^{'}}W_{s} ,就会趋近于0,和 0.01^{50} 趋近与0是一个道理。同理当 W_{s} 很大时 \prod_{j=k+1}^{t}{tanh^{'}}W_{s} 就会趋近于无穷,这就是RNN中梯度消失和爆炸的原因。

至于怎么避免这种现象,让我在看看 \frac{\partial{L_{t}}}{\partial{W_{x}}}=\sum_{k=0}^{t}{\frac{\partial{L_{t}}}{\partial{O_{t}}}\frac{\partial{O_{t}}}{\partial{S_{t}}}}(\prod_{j=k+1}^{t}{\frac{\partial{S_{j}}}{\partial{S_{j-1}}}})\frac{\partial{S_{k}}}{\partial{W_{x}}} 梯度消失和爆炸的根本原因就是 \prod_{j=k+1}^{t}{\frac{\partial{S_{j}}}{\partial{S_{j-1}}}} 这一坨,要消除这种情况就需要把这一坨在求偏导的过程中去掉,至于怎么去掉,一种办法就是使 {\frac{\partial{S_{j}}}{\partial{S_{j-1}}}}\approx1 另一种办法就是使 {\frac{\partial{S_{j}}}{\partial{S_{j-1}}}}\approx0 。其实这就是LSTM做的事情。

转载:https://zhuanlan.zhihu.com/p/28687529

 

LSTM解决梯度消失解释:从公式上和内容上两方面解释

从公式角度解释:

先上一张LSTM的经典图:

 

至于这张图的详细介绍请参考:Understanding LSTM Networks

下面假设你已经阅读过Understanding LSTM Networks这篇文章了,并且了解了LSTM的组成结构。

RNN梯度消失和爆炸的原因这篇文章中提到的RNN结构可以抽象成下面这幅图:

 

而LSTM可以抽象成这样:

 

三个×分别代表的就是forget gate,input gate,output gate,而我认为LSTM最关键的就是forget gate这个部件。这三个gate是如何控制流入流出的呢,其实就是通过下面 f_{t},i_{t},o_{t} 三个函数来控制,因为 \sigma(x)(代表sigmoid函数) 的值是介于0到1之间的,刚好用趋近于0时表示流入不能通过gate,趋近于1时表示流入可以通过gate。

f_{t}=\sigma({W_{f}X_{t}}+b_{f})

i_{t}=\sigma({W_{i}X_{t}}+b_{i})

o_{i}=\sigma({W_{o}X_{t}}+b_{o})

当前的状态 S_{t}=f_{t}S_{t-1}+i_{t}X_{t}类似与传统RNN S_{t}=W_{s}S_{t-1}+W_{x}X_{t}+b_{1}。将LSTM的状态表达式展开后得:

S_{t}=\sigma(W_{f}X_{t}+b_{f})S_{t-1}+\sigma(W_{i}X_{t}+b_{i})X_{t}

如果加上激活函数, S_{t}=tanh\left[\sigma(W_{f}X_{t}+b_{f})S_{t-1}+\sigma(W_{i}X_{t}+b_{i})X_{t}\right]

RNN梯度消失和爆炸的原因这篇文章中传统RNN求偏导的过程包含 \prod_{j=k+1}^{t}\frac{\partial{S_{j}}}{\partial{S_{j-1}}}=\prod_{j=k+1}^{t}{tanh{'}W_{s}}

对于LSTM同样也包含这样的一项,但是在LSTM中 \prod_{j=k+1}^{t}\frac{\partial{S_{j}}}{\partial{S_{j-1}}}=\prod_{j=k+1}^{t}{tanh{’}\sigma({W_{f}X_{t}+b_{f}})}

假设 Z=tanh{'}(x)\sigma({y}) ,则 Z 的函数图像如下图所示:

 

可以看到该函数值基本上不是0就是1。

再看看RNN梯度消失和爆炸的原因这篇文章中传统RNN的求偏导过程:

\frac{\partial{L_{3}}}{\partial{W_{s}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{S_{2}}}\frac{\partial{S_{2}}}{\partial{S_{1}}}\frac{\partial{S_{1}}}{\partial{W_{s}}}

如果在LSTM中上式可能就会变成:

\frac{\partial{L_{3}}}{\partial{W_{s}}}=\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{3}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{2}}}{\partial{W_{s}}}+\frac{\partial{L_{3}}}{\partial{O_{3}}}\frac{\partial{O_{3}}}{\partial{S_{3}}}\frac{\partial{S_{1}}}{\partial{W_{s}}}

因为 \prod_{j=k+1}^{t}\frac{\partial{S_{j}}}{\partial{S_{j-1}}}=\prod_{j=k+1}^{t}{tanh{’}\sigma({W_{f}X_{t}+b_{f}})}\approx0|1 ,这样就解决了传统RNN中梯度消失的问题。

转载:https://zhuanlan.zhihu.com/p/28749444

从内容角度解释:

LSTM 的核心思想

LSTM 的关键就是细胞状态,水平线在图上方贯穿运行。
细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

Paste_Image.png

LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。

Paste_Image.png


Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”!

LSTM 拥有三个门,来保护和控制细胞状态。

逐步理解 LSTM

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取 h_{t-1}x_t,输出一个在 0 到 1 之间的数值给每个在细胞状态 C_{t-1} 中的数字。1 表示“完全保留”,0 表示“完全舍弃”。
让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语

决定丢弃信息


下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一,sigmoid 层称 “输入门层” 决定什么值我们将要更新。然后,一个 tanh 层创建一个新的候选值向量,\tilde{C}_t,会被加入到状态中。下一步,我们会讲这两个信息来产生对状态的更新。
在我们语言模型的例子中,我们希望增加新的主语的性别到细胞状态中,来替代旧的需要忘记的主语。

确定更新的信息

现在是更新旧细胞状态的时间了,C_{t-1} 更新为 C_t。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。
我们把旧状态与 f_t 相乘,丢弃掉我们确定需要丢弃的信息。接着加上 i_t * \tilde{C}_t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。
在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的性别信息并添加新的信息的地方。

更新细胞状态

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。
在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

输出信息

转载:https://www.cnblogs.com/hellcat/p/7182541.html?utm_source=itdadao&utm_medium=referral

  • 6
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值