贪心法之图顶点着色

本文探讨了图论中的经典问题——图的m色着色问题,即判断一个无向图是否能用不超过m种颜色进行着色,使得任意相邻顶点颜色不同。文章介绍了解决该问题的一种有效方法——回溯算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:
       给出一个无向图和一个数字m,此数字代表了允许使用颜色的种类,判断是否至多可以应用m种颜色,将图的每个顶点着色,并且相邻节点着的颜色不同。

  采用的方法应该是回溯算法:

      算法的基本思想是,对于每个不同的节点,依次进行着色,在试图着色之后要进行判断,判断此节点的已经着色的临接节点中是否有和它着相同颜色的,如果有,那么此节点放弃当前的着色,改试使用其他颜色,最终,如果每一种颜色对此节点都不适用,那么就返回false,说明此图不能应用m种颜色对每个节点都着色而且每对相邻节点都能着不同的颜色。相反,如果此节点着以某种颜色能够满足与它邻接点颜色不一样的话,那么尝试对下一个节点着色,直至所有节点都被着色,而且每对邻接点的颜色都不一样,那我们就成功了。

#include
#include
using namespace std;
const int maxn=30;
int T[maxn][maxn];
int color[maxn];
int n;
bool ok(int );
int inp()
{
    memset(color,0,sizeof(color));
    int k=0,flag=1;
    while(flag==1)
    {
         k++;flag=0;
        for(int i=0;i>n)
    {
        for(int i=0;i>T[i][j];
            }
        }

        cout<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值