交叉熵损失函数(cross-entropy loss function)原理及Pytorch代码简介
为了更好的理解交叉熵的意义,先介绍一下相对熵的概念1、相对熵基本概念相对熵又称为KL散度(Kullback–Leibler divergence),用来描述两个概率分布的差异性。假设有对同一变量xxx的q(x)q(x)q(x)和p(x)p(x)p(x)两个概率分布,那么两者之间的相对熵可由以下定义:DKL(p∥q)=∑i=1Np(xi)log(p(xi)q(xi))D_{K L...
原创
2019-05-07 19:08:06 ·
92425 阅读 ·
17 评论