《Spark大数据处理:技术、应用与性能优化》【PDF】

内容简介

《Spark大数据处理:技术、应用与性能优化》根据最新技术版本,系统、全面、详细讲解Spark的各项功能使用、原理机制、技术细节、应用方法、性能优化,以及BDAS生态系统的相关技术。

作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性。具体来讲,它有如下优势:

打造全栈多计算范式的高效数据流水线

轻量级快速处理

易于使用,支持多语言

与HDFS等存储层兼容

社区活跃度高

……

Spark已经在全球范围内广泛使用,无论是Intel、Yahoo!、Twitter、阿里巴巴、百度、腾讯等国际互联网巨头,还是一些尚处于成长期的小公司,都在使用Spark。本书作者结合自己在微软和IBM实践Spark的经历和经验,编写了这本书。站着初学者的角度,不仅系统、全面地讲解了Spark的各项功能及其使用方法,而且较深入地探讨了Spark的工作机制、运行原理以及BDAS生态系统中的其他技术,同时还有一些可供操作的案例,能让没有经验的读者迅速掌握Spark。更为重要的是,本书还对Spark的性能优化进行了探讨。

    作者简介

高彦杰

毕业于中国人民大学,就职于IBM,精通Hadoop相关技术,较早接触并使用Spark,对Spark应用开发、Spark系统的运维和测试比较熟悉,深度阅读了Spark的源代码,了解Spark的运行机制,擅长Spark的查询优化。

    目录

前 言
第1章 Spark简介
1
1.1 Spark是什么
1
1.2 Spark生态系统BDAS
4
1.3 Spark架构
6
1.4 Spark分布式架构与单机多核架构的异同
9
1.5 Spark的企业级应用
10
1.5.1 Spark在Amazon中的应用
11
1.5.2 Spark在Yahoo!的应用
15
1.5.3 Spark在西班牙电信的应用
17
1.5.4 Spark在淘宝的应用
18
1.6 本章小结
20
第2章 Spark集群的安装与部署
21
2.1 Spark的安装与部署
21
2.1.1 在Linux集群上安装与配置Spark
21
2.1.2 在Windows上安装与配置Spark
30
2.2 Spark集群初试
33
2.3 本章小结
35
第3章 Spark计算模型
36
3.1 Spark程序模型
36
3.2 弹性分布式数据集
37
3.2.1 RDD简介
38
3.2.2 RDD与分布式共享内存的异同
38
3.2.3 Spark的数据存储
39
3.3 Spark算子分类及功能
41
3.3.1 Value型Transformation算子
42
3.3.2 Key-Value型Transformation算子
49
3.3.3 Actions算子
53
3.4 本章小结
59
第4章 Spark工作机制详解
60
4.1 Spark应用执行机制
60
4.1.1 Spark执行机制总览
60
4.1.2 Spark应用的概念
62
4.1.3 应用提交与执行方式
63
4.2 Spark调度与任务分配模块
65
4.2.1 Spark应用程序之间的调度
66
4.2.2 Spark应用程序内Job的调度
67
4.2.3 Stage和TaskSetManager调度方式
72
4.2.4 Task调度
74
4.3 Spark
I/O机制 77
4.3.1 序列化
77
4.3.2 压缩
78
4.3.3 Spark块管理
80
4.4 Spark通信模块
93
4.4.1 通信框架AKKA
94
4.4.2 Client、Master和Worker间的通信
95
4.5 容错机制
104
4.5.1 Lineage机制
104
4.5.2 Checkpoint机制
108
4.6 Shuffle机制
110
4.7 本章小结
119
第5章 Spark开发环境配置及流程
120
5.1 Spark应用开发环境配置
120
5.1.1 使用Intellij开发Spark程序
120
5.1.2 使用Eclipse开发Spark程序
125
5.1.3 使用SBT构建Spark程序
129
5.1.4 使用Spark
Shell开发运行Spark程序 130
5.2 远程调试Spark程序
130
5.3 Spark编译
132
5.4 配置Spark源码阅读环境
135
5.5 本章小结
135
第6章 Spark编程实战
136
6.1 WordCount
136
6.2 Top
K 138
6.3 中位数
140
6.4 倒排索引
141
6.5 CountOnce
143
6.6 倾斜连接
144
6.7 股票趋势预测
146
6.8 本章小结
153
第7章 Benchmark使用详解
154
7.1 Benchmark简介
154
7.1.1 Intel
Hibench与Berkeley
BigDataBench 155
7.1.2 Hadoop
GridMix 157
7.1.3 Bigbench、BigDataBenchmark与TPC-DS
158
7.1.4 其他Benchmark
161
7.2 Benchmark的组成
162
7.2.1 数据集
162
7.2.2 工作负载
163
7.2.3 度量指标
167
7.3 Benchmark的使用
168
7.3.1 使用Hibench
168
7.3.2 使用TPC-DS
170
7.3.3 使用BigDataBench
172
7.4 本章小结
176
第8章 BDAS简介
177
8.1 SQL
on Spark 177
8.1.1 使用Spark
SQL的原因 178
8.1.2 Spark
SQL架构分析 179
8.1.3 Shark简介
182
8.1.4 Hive
on Spark 184
8.1.5 未来展望
185
8.2 Spark
Streaming 185
8.2.1 Spark
Streaming简介 186
8.2.2 Spark
Streaming架构 188
8.2.3 Spark
Streaming原理剖析 189
8.2.4 Spark
Streaming调优 198
8.2.5 Spark
Streaming 实例 198
8.3 GraphX
205
8.3.1 GraphX简介
205
8.3.2 GraphX的使用
206
8.3.3 GraphX架构
209
8.3.4 运行实例
211
8.4 MLlib
215
8.4.1 MLlib简介
217
8.4.2 MLlib的数据存储
219
8.4.3 数据转换为向量(向量空间模型VSM)
222
8.4.4 MLlib中的聚类和分类
223
8.4.5 算法应用实例
228
8.4.6 利用MLlib进行电影推荐
230
8.5 本章小结
237
第9章 Spark性能调优
238
9.1 配置参数
238
9.2 调优技巧
239
9.2.1 调度与分区优化
240
9.2.2 内存存储优化
243
9.2.3 网络传输优化
249
9.2.4 序列化与压缩
251
9.2.5 其他优化方法
253
9.3 本章小结
255

 

 

《Spark大数据处理:技术、应用与性能优化》【PDF】下载链接:  https://u253469.pipipan.com/fs/253469-230062536

发布了33 篇原创文章 · 获赞 5 · 访问量 7万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览