Fibonacci数计算中的两个思维盲点及其扩展数列的通用高效解法

From: http://www.cnblogs.com/flyinghearts/archive/2012/02/28/2372530.html



pdf版本下载

㈠ Fibonacci

刚接触Fibonacci数的时候,在网上看到“矩阵法”,看到要先实现一个矩阵乘法,感觉太麻烦了。后来仔细观察Fibonacci数列,发现有下面的规律:

F(n)     = F(k)*F(n+1-k) + F(k-1)*F(n-k)          =>

F(2*n)   = F(n+1) * F(n) + F(n) * F(n - 1)

F(2*n+1) = F(n+1) * F(n+1) + F(n) * F(n)

根据该公式:要计算F(n),只需先计算出F(n/2)和F(n/2+1),于是得出一个数的O(log n)解法。(例如:计算F(13) => 计算F(6)、F(7) => 计算F(3)、F(4) => 计算F(1)、F(2)。)

再后来无意间发现,“矩阵法”根本就不必实现一个矩阵,网上广为流传的糟糕的做法,掩盖了“矩阵法”的优美。

 

     先回顾下Fibonacci数列的矩阵法:

   

上式中,对系数矩阵A求n次方,有O(log n)解法,因而整个算法是O(log n)。

某些介绍矩阵法的文章,会“偷懒”采用上面的第二种写法,而不是第一种写法。偷懒的结果,总是要付出代价的。对上面矩阵法的实现,存在两个盲点,也正由于这两个盲点,使“矩阵法”的实现代码看起来很复杂,失去了简洁之美。

 

盲点之一:对系数矩阵A求n次方,可以不采用矩阵乘法来实现。

将F(1) = F(2) = 1, F(0) = 0代入上面的公式1,得到:


    上式,对任意 n >=1都成立,也就是说A的任意n次方,只要用两个变量表示,根本没必要去实现矩阵乘法。

另外,由 A^n = A^k * A^(n-k),结合上式,很容易就得到前面提到的公式:

F(n) = F(k)*F(n+1-k) + F(k-1)*F(n-k)

 

 

盲点之二: A的n次方计算方法。

计算一个数m的n次方,

若采用迭代法的话,一般是将m^n,拆分成m、m^2、m^4、m^8…中的几个的乘积。

若采用递归的话,则是将m^n拆分成计算m^(n/2)

 

//迭代法:

int pow1(int m, unsigned n)

{

   int result = 1;

  int factor = m;

   while (n) {

     if (& 1) { result *= factor; }

     factor *= factor;

     n /= 2u;

   }

   return result;

}

 

//递归法

int pow2(int m, unsigned n)

{

 if (== 0) return 1;

 int square_root = pow2(m, n / 2);

 int result = square_root * square_root;

 if (& 1) result *= m;

 return result;

}

 

对于计算一个整数的n次方,显然第一种解法效率高,但对计算矩阵的n次方,第二种解法(递归法)则更简单。该递归算法也可写成迭代形式:

 

int pow3(int m, unsigned n)

{

 if (== 0) return 1;

 unsigned flag = n;               //小等于n的最大的2的k次幂

 for (unsigned value = n; value &= (value - 1); ) flag = value;

 

 int result = m;

 while (flag >>= 1) {

    result *= result;

    if (& flag) result *= m;

 }

 return result;

}

 

(求小等于n的最大的2k次幂(或求二进制表示中的最高/左位1),有两种不通用O(1)方法:一种是使用位扫描汇编指令、另外一种是利用浮点数的二进制表示。)

unsigned extract_leftmost_one(unsigned num)

{

 union {

    unsigned i;

    float f;

 } u;

 u.f = (float)num;

 return u.i >> 23;

}

 

最后可得到如下代码:

 采用一般迭代法计算A^n

typedef unsigned uint;

 

static inline void matrix_multiply(uint& b1, uint& b2, uint a1, uint a2)

{

 const uint r1 =   a1 * b1 + a1 * b2 + a2 * b1;

 const uint r2 =   a1 * b1 + a2 * b2;

 b1 = r1;

 b2 = r2; 

}

 

uint fib_matrix(uint num)

{

 uint b1 = 0, b2 = 1;

 uint a1 = 1, a2 = 0;

 for (; num != 0; num >>= 1) {

    if (num & 1) matrix_multiply(b1, b2, a1, a2);

    matrix_multiply(a1, a2, a1, a2);

 }

 return b1;

}

 

 

 采用新的迭代法计算A^n

typedef unsigned uint;

uint fibonacci(uint num)

{

 if (num == 0) return 0;

 uint flag = num;             //extract_leftmost_one

 for (uint value = num; value &= value - 1; ) flag = value;

 

 uint a1 = 1, a2 = 0;

 while (flag >>= 1) {

   const uint r1 = a1 * a1 + 2 * a1 * a2;

    const uint r2 = a1 * a1 +     a2 * a2; 

    a1 = r1;

    a2 = r2;

    if (num & flag) {

      a1 = r1 + r2;

      a2 = r1;

    }

 }

 return a1;

}

 

 

上面提到的方法,很容易扩展到三阶矩阵,下面是《编程之美》书上的一道扩展题的解法:

(具体分析见下一节)

 

假设:A(0)=1, A(1)=2, A(2)=2,对n>2都有A(n)=A(n-1)+A(n-2)+A(n-3),

1. 对于任何一个给定的n,如何计算出A(n)?

2. 对于n非常大的情况,如n=2^60的时候,如何计算A(n) mod M (M < 100000)呢?

 

typedef unsigned uint;

typedef unsigned long long uint64;

 

uint fib_ex(uint64 num, uint M)

{

 assert(!= 0);

 const uint g0 = 1, g1 = 2, g2 = 2;

 if (num == 0) return g0;

 uint64 flag = num;

 for (uint64 value = num; value &= value - 1; ) flag = value;

 

 uint64 a1 = 0, a2 = 1, a3 = 0;

 while (flag >>= 1) {

    const uint64 r1 = 2 * (a1 + a2 + a3) * a1 +      a2 * a2;

    const uint64 r2 = 2 * (a1 + a2)      * a1 + 2 * a2 * a3; 

    const uint64 r3 =     (a1 + 2 * a2) * a1 +      a3 * a3;

    a1 = r1;

    a2 = r2;

    a3 = r3;

    if (num & flag) {

      a1 = r1 + r2;

      a2 = r1 + r3;

      a3 = r1;

    }

    a1 %= M;

    a2 %= M;

    a3 %= M;

 }

 return (a1 * g2 + a2 * g1 + a3 * g0) % M;

}

 

 

㈡ 扩展数列的通解:

    下面将前面的结果扩展到任意m阶数列:



例子:

 

   m=2 g(n) = f1 * g(n-1) + f2 * g(n-2) 初始值为:g0 = g(0) g1=g(1)

     设系数矩阵为AAn的最后一行为(a1 a2),则

倒数第二行为:(f1*a1 + a2 f2*a1)

即:

     系数矩阵A              An

      f1 f2        f1*a1 + a2    f2*a1

      1   0            a1         a2

 

 

typedef unsigned uint;

 

uint fib_matrix2(uint num)

{

 if (num == 0) return g0;

 uint flag = num;

 for (uint value = num; value &= value - 1; ) flag = value;

 /*

     A               A^n

    f1 f2   f1*a1 + a2    f2*a1

    1   0       a1         a2

 */

 uint a1 = 1, a2 = 0; // 0 0 ... 1 0

 while (flag >>= 1) {

    const uint r1 = f1 * a1 * a1 + 2 * a1 * a2;

    const uint r2 = f2 * a1 * a1 +      a2 * a2; 

    a1 = r1;

    a2 = r2;

    if (num & flag) {

      a1 = f1 * r1 + r2;

      a2 = f2 * r1;

    }

 }

 return a1 * g1 + a2 * g0;

}

 

② m=3 g(n) = f1 * g(n-1) + f2 * g(n-2) + f3*g(n-3),初始值为:g0 = g(0)g1=g(1), g2=g(2)

设系数矩阵为AAn的最后一行为(a1 a2 a3),则

倒数第二行为:(f1*a1 + a2 f2*a1 + a3 f3*a1)

    倒数第三行为:((f1*f1+f2)*a1 + f1*a2 + a3   (f1*f2+f3)*a1 + f2*a2  f1*f3*a1 + f3*a2)

即:

    系数矩阵A                                 An 

    f1 f2 f3    (f1*f1+f2)*a1 + f1*a2 + a3 (f1*f2+f3)*a1 + f2*a2   f1*f3*a1 + f3*a2

    1   0   0             f1*a1 + a2                 f2*a1 + a3         f3*a1

    0   1   0               a1                      a2                 a3

 

typedef unsigned uint;

 

uint fib_matrix3(uint num)

{

 if (num == 0) return g0;

 uint flag = num;

 for (uint value = num; value &= value - 1; ) flag = value;

 /*

       A                                       A^n

    f1 f2 f3   (f1*f1+f2)*a1 + f1*a2 + a3 (f1*f2+f3)*a1 + f2*a2   f1*f3*a1 + f3*a2

    1   0   0            f1*a1 + a2                  f2*a1 + a3         f3*a1

    0   1   0               a1                          a2                 a3

 */

 uint a1 = 0, a2 = 1, a3 = 0; // 0 0 ... 1 0

 while (flag >>= 1) {

    const uint r1 = (f1 * f1 + f2) * a1 * a1 + 2 * f1 * a1 * a2 + 2 * a1 * a3 + a2 * a2;

    const uint r2 = (f1 * f2 + f3) * a1 * a1 + 2 * f2 * a1 * a2 + 2 * a2 * a3; 

    const uint r3 = (f1 * f3)      * a1 * a1 + 2 * f3 * a1 * a2 +     a3 * a3;

    a1 = r1;

    a2 = r2;

    a3 = r3;

    if (num & flag) {

      a1 = f1 * r1 + r2;

      a2 = f2 * r1 + r3;

      a3 = f3 * r1;

    }

 }

 return a1 * g2 + a2 * g1 + a3 * g0;

}

 

 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在现有省、市港口信息化系统进行有效整合基础上,借鉴新 一代的感知-传输-应用技术体系,实现对码头、船舶、货物、重 大危险源、危险货物装卸过程、航管航运等管理要素的全面感知、 有效传输和按需定制服务,为行政管理人员和相关单位及人员提 供高效的管理辅助,并为公众提供便捷、实时的水运信息服务。 建立信息整合、交换和共享机制,建立健全信息化管理支撑 体系,以及相关标准规范和安全保障体系;按照“绿色循环低碳” 交通的要求,搭建高效、弹性、高可扩展性的基于虚拟技术的信 息基础设施,支撑信息平台低成本运行,实现电子政务建设和服务模式的转变。 实现以感知港口、感知船舶、感知货物为手段,以港航智能 分析、科学决策、高效服务为目的和核心理念,构建“智慧港口”的发展体系。 结合“智慧港口”相关业务工作特点及信息化现状的实际情况,本项目具体建设目标为: 一张图(即GIS 地理信息服务平台) 在建设岸线、港口、港区、码头、泊位等港口主要基础资源图层上,建设GIS 地理信息服务平台,在此基础上依次接入和叠加规划建设、经营、安全、航管等相关业务应用专题据,并叠 加动态据,如 AIS/GPS/移动平台据,逐步建成航运管理处 "一张图"。系统支持扩展框架,方便未来更多应用资源的逐步整合。 现场执法监管系统 基于港口(航管)执法基地建设规划,依托统一的执法区域 管理和字化监控平台,通过加强对辖区内的监控,结合移动平 台,形成完整的多维路径和信息追踪,真正做到问题能发现、事态能控制、突发问题能解决。 运行监测和辅助决策系统 对区域港口与航运业务日常所需填报及监测的据经过科 学归纳及分析,采用统一平台,消除重复的填报据,进行企业 输入和自动录入,并进行系统智能判断,避免填入错误的据, 输入的据经过智能组合,自动生成各业务部门所需的据报 表,包括字段、格式,都可以根据需要进行定制,同时满足扩展 性需要,当有新的业务监测据表需要产生时,系统将分析新的 需求,将所需字段融合进入日常监测和决策辅助平台的统一平台,并生成新的所需业务据监测及决策表。 综合指挥调度系统 建设以港航应急指挥心为枢纽,以各级管理部门和经营港 口企业为节点,快速调度、信息共享的通信网络,满足应急处置所需要的信息采集、指挥调度和过程监控等通信保障任务。 设计思路 根据项目的建设目标和“智慧港口”信息化平台的总体框架、 设计思路、建设内容及保障措施,围绕业务协同、信息共享,充 分考虑各航运(港政)管理处内部管理的需求,平台采用“全面 整合、重点补充、突出共享、逐步完善”策略,加强重点区域或 运输通道交通基础设施、运载装备、运行环境的监测监控,完善 运行协调、应急处置通信手段,促进跨区域、跨部门信息共享和业务协同。 以“统筹协调、综合监管”为目标,以提供综合、动态、实 时、准确、实用的安全畅通和应急据共享为核心,围绕“保畅通、抓安全、促应急"等实际需求来建设智慧港口信息化平台。 系统充分整合和利用航运管理处现有相关信息资源,以地理 信息技术、网络视频技术、互联网技术、移动通信技术、云计算 技术为支撑,结合航运管理处专网与行业据交换平台,构建航 运管理处与各部门之间智慧、畅通、安全、高效、绿色低碳的智 慧港口信息化平台。 系统充分考虑航运管理处安全法规及安全职责今后的变化 与发展趋势,应用目前主流的、成熟的应用技术,内联外引,优势互补,使系统建设具备良好的开放性、扩展性、可维护性。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值