斐波那契数列扩展,递归的理解

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

思路:f(1)=1;

  f(2)=f(1)+f(0);

f(3)=f(2)+f(1)+f(0)=f(3-1)+f(3-2)+f(3-3)

f(3)的解释:台阶有3个,第一步可以跳出1或2或3格。假如第一跳跳出1格,则剩余需要跳的次数是f(2) ;假如第一跳跳出2格,则剩余需要跳的次数是f(1);假如第一跳跳出3格,则剩余需要跳的次数是f(0) =1;所以f(3)=f(2)+f(1)+f(0)

所以f(n)=f(n-1)+f(n-2)...f(0)=f(n-1)+f(n-1)=2*f(n-1)

class Solution {
public:
    int jumpFloorII(int n) {
        if(n==0||n==1)
            return 1;
        
        return 2*jumpFloorII(n-1);
    }
};

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值