题目描述:
有12个外形一样的球,其中一个球质量不同于其他球,其他球质量相同,现有一个天平,没有砝码,只能称出哪边轻哪边重。现要求称三次找出那个质量不同的球,并指出该球比其他球轻还是重。
分析与解答:
对于一次称量,如果天平平衡,说明两边的球都是普通球,要找的球肯定在剩余球中;如果天平不平衡,说明要找的球必定在天平某一边上,而剩余的球必定是普通球。如果将12个球平分成2组,第一次称量肯定不平衡,得不出任何结论。只能尝试将球平分成3堆和4堆。
首先考虑分成3组的情况。给球分成ABC三组,编号分别为a1、a2、a3、a4,b1、b2、b3、b4,c1、c2、c3、c4。
比较方法和结果如上图所示,图中“vs”表示一次称量,">", "=", "<"表示称量的结果,左边比右边重,相等,或者轻。第一次比较结果A比B重的情况和A比B轻的情况类似,故省略。
转载自:http://www.cnblogs.com/segeon/archive/2012/10/05/2712100.html