数据挖掘
文章平均质量分 68
数据出境研究所
从事数据出境工作,为您奉上:1.数据出境的法律法规、标准解读;2.数据出境安全评估、标准合同备案要求及流程解读;3.主管部门审核的标准、要点解读;4.安全评估、标准合同备案申请材料指点。
和您一道打造数据出境工作交流新平台,助您顺利通过数据出境安全评估、备案工作。
展开
-
数据挖掘--数据篇(学习心得)
数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合,在一个大型数据库中,自动的发现有用信息的过程,还具有预测未来观测结果的能力。数据挖掘的对象是数据,所以离开数据,挖掘无从谈起。现将我学习《数据挖掘导论》的笔记写出来,巩固一下知识。一、数据类型。数据对象有其它的名字,如记录,点,向量,模式,事件,案例,样本,观测或实体。1、属性与度量属性是对象的性质或特性,原创 2008-03-31 21:47:00 · 16306 阅读 · 3 评论 -
Improving web-query processing through semantic knowledge and user feedback-4
7. DiscussionThe use of ResearchCyc has been successful for improving web querying. However, the quantity of information contained in ResearchCyc and the lack of mechanisms for accessing Research翻译 2008-05-26 13:50:00 · 806 阅读 · 0 评论 -
Improving web-query processing through semantic knowledge and user feedback-3
4. MethodologyThe methodology uses semantic, linguistic, and factual information from ResearchCyc and WordNet to process web queries. The two major aspects of the methodology are query expansion and翻译 2008-05-26 13:47:00 · 746 阅读 · 0 评论 -
数据挖掘-分类:其它技术(一)
分类:其它技术一.基于规则分类器基于规则的分类器是使用一组"if...then..."规则来分类记录的技术.基于规则的分类器产生一个模型,该模型的规则用析取范式R=(r1Vr2Vr3V...rk)表示,其中R称作规则集,而ri是分类规则或析取项.每一个分类规则可以用如下表示:ri=(条件i)->yi,左边称为规则前件或前提,它是属性的合取:条件i=(A1 op V1)and(A2 op V原创 2008-05-10 21:12:00 · 2371 阅读 · 1 评论 -
Improving web-query processing through semantic knowledge and user feedback-1
看一篇关于搜索引擎方面的文章,将它翻译一下,水平有限,。。 Improving web-query processing through semantic knowledge and user feedback AbstractAlthough search engines are very useful for obtaining information from the W原创 2008-05-10 11:40:00 · 883 阅读 · 0 评论 -
数据挖掘有关术语
(转自网上,谢谢原作者)数据挖掘有关术语(Glossary) 人工神经网络(Artificial Neural Networks) 一种非线性预测模型,通过训练和在结构上模仿生物神经网络来学习。 分类和衰退树(CART Classification and Regression Trees) 一种用于数据集分类决策树技术。它提供一套也可用于一个新的未分类的数据集的规则,以预测哪转载 2008-04-19 20:56:00 · 1364 阅读 · 0 评论 -
数据挖掘综述
何时需要使用数据挖掘工具 数据挖掘,简单说,就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。随着信息技术的迅速发展和企业信息化的深入,企业积累的数据越来越多。数据的背后应隐藏着许多重要信息,企业自然希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据库系统可以高效地实现数据的录入、修改、统计、查询等功能,但无法发现数据中存在的关系和规则,无法根据现有转载 2008-04-19 20:53:00 · 1390 阅读 · 0 评论 -
数据挖掘的几点体会(转载)
1、挖掘工具主要分商业数据产品和集成数据挖掘产品两类:商业数据挖掘产品具有代表性的SPSS Clementine,SAS Enterprise Miner,IBM Intelligent Miner;SQL Server2005属于集成了挖掘模型类的,挖掘算法与SQL数据库产品密不可分,你甚至可以把自己实现的数据挖掘算法跟SQL进行集成,Oracle也类似,DB2的BI功能没怎么用,不是很清楚。转载 2008-04-19 20:58:00 · 989 阅读 · 0 评论 -
数据挖掘---分类:基本概念、决策树、与模型评估
分类:基本概念、决策树与模型评估分类任务就是确定对象属于那个预定义的目标类。就是通过学习得到一个目标函数f,把每个属性集映射到一个预先定义的类标号y.一、预备知识分类任务的输入数据是记录的集合,每条记录称为实例,用元组(x,y)表示,其中x是属性的集合,y是一个特殊的集合。 描述性建模:分类模型可以作为解释性工具,用于区分不同类中的对象.预测性建模:分类模型还可以用于预测未知原创 2008-04-19 20:41:00 · 6467 阅读 · 2 评论 -
数据挖掘---探索数据篇
探索数据是对数据进行初步研究,以便更好的理解它的特殊性质,有助于选择合适的数据预处理和数据分析技术。一。汇总统计汇总统计是量化的,用单个数或数的小集合捕获可能很大的值集的各种特征。1。频率和众数是描绘无序的、分类的值的集合。给定一个在{v1,v2...,vi,...,vk}上取值的分类属性x和m个对象的集合,值vi的频率定义为:frequency(vi)=具有属性值vi的对象数/原创 2008-04-13 20:56:00 · 1620 阅读 · 0 评论 -
数据挖掘-分类:其它技术(二)
四.人工神经网络人工神经网络的研究是由试图模拟生物神经系统而激发的.1.感知器感知器包含两种结点:输入结点,用来表示属性;一个输出结点,用来提供模型输出.在感知器中,每个输入结点都通过一个加权的链接到输出结点,这个加权的链用来模拟神经元间神经键连接的强度.感知器对输入加权法求和,再减去偏置因子t,然后考察结果的符号,得到输出值y.2.多层人工神经网络人工神经网络结构比感知器模型更复杂,这些额外的复原创 2008-05-28 22:09:00 · 1589 阅读 · 0 评论