语义分割实现地表建筑物识别6 模型集成

语义分割实现地表建筑物识别6 模型集成

学习目标

  1. 学习集成学习方法
  2. 使用交叉验证训练模型,得到多个模型权重
  3. 学习Snapshot和TTA的具体用法

数据集划分和集成学习方法

深度学习中如果设备允许可以采用交叉验证的方法,否则采用留出法。
以10折交叉验证为例,训练10个语义分割模型,然后可以通过对预测结果的概率值进行平均,解码为具体字符;也可以对预测的字符进行投票,得到最终字符。

机器学习中常用的集成学习方法包括 Stacking、Bagging和 Boosting。决策树(二)——集成模型

  • Boosting trees:【典型方法是AdaBoost和GBDT.】
    不同的分类器通过串行训练而获得,每个新分类器都重点关注已有分类器错分的样本来获得新的分类器,递归生成多个分类器,采用加权求和的方法获得集成模型。

The algorithm works by applying the weak learner sequentially to
weighted versions of the data,where more weight is given to examples
that were misclassified by earlier rounds. ——《Machine Learning - A
Probabilistic Perspective》

  • Bagging aggregated trees 【一种典型的方法是随机森林】
    随机森林算法一言以蔽之,对于随机选取的数据集,在随机选择的样本特征中,选择一个最优的特征依据基尼不纯度或总方差指标建立CART决策树,并行得到多个决策树,各决策树预测结果通过投票输出最终结果。

  • Stacking
    pass

深度学习中的集成学习

Snapshot

原理:很早地降低学习率继续训练, 对最后的误差并不会造成大的影响, 却极大地提高了训练的效率, 使得模型在较少的epoch轮数迭代后就达到局部极小成为了可能。

Snapshot Ensemble就是在一次训练(最优化)过程中, 在最终收敛之前, 访问多个局部极小, 在每个局部极小保存快照即作为一个模型, 在预测时使用所有保存的模型进行预测, 最后取平均值作为最终结果.

因此, 论文中采用了Cyclic Cosine Annealing方法, 很早地就下调了学习率, 使训练尽快地到达第一个局部极小, 得到第一个模型. 然后提升学习率, 扰乱模型, 使得模型脱离局部极小, 然后重复上述步骤若干次, 直到获取指定数量的模型.最后将对各模型进行集成。

这个方法可以在一定程度上提高模型精度,但需要更长的训练时间。

TTA

测试集数据扩增可以应用在训练集和测试集上。对同一个样本预测三次,然后对三次结果进行平均。

for idx, name in enumerate(tqdm_notebook(glob.glob(./test_mask/*.png’)[:])):
	image = cv2.imread(name)
	image = trfm(image)
	with torch.no_grad():
		image = image.to(DEVICE)[None]
		score1 = model(image).cpu().numpy()

		score2 = model(torch.flip(image, [0, 3]))
		score2 = torch.flip(score2, [3, 0]).cpu().numpy()

		score3 = model(torch.flip(image, [0, 2]))
		score3 = torch.flip(score3, [2, 0]).cpu().numpy()
		score = (score1 + score2 + score3) / 3.0
		score_sigmoid = score[0].argmax(0) + 1

参考

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值