一、奠基阶段(2014-2018)
功能特点:
- 实现简单的跨模态关联,例如将图片和文字进行基础匹配。
- 主要用于检索任务,如用文字搜索图片或用图片搜索文字。
技术升级:
- 特征拼接:早期模型(如Google的Multi-modal Fusion Network)直接将图像和文本的特征拼接,形成联合表示。
- 注意力机制:微软的动态共注意力模型引入联合学习机制,让模型能关注图片和文本中的关键区域。
性能突破:
- 跨模态检索准确率提升至60%-70%,但依赖大量标注数据。
- 视频理解任务中,动作识别精度提高约15%。
应用场景:
- 电商平台的图文商品检索
- 视频平台的标签自动生成
二、预训练突破阶段(2019-2022)
功能特点:
- 支持零样本学习(无需标注数据即可分类)、跨模态生成(如用图片生成文字描述)。
- 模型开始具备上下文理解能力,例如根据多张图片回答问题。
技术升级:
- 对比学习:CLIP模型通过4亿互联网图文对训练,让图像和文本在统一语义空间对齐。
- 参数高效微调:Flamingo冻结视觉编码器,仅训练跨模态注意力层,降低75%计算成本。
性能突破:
- 零样本图像分类准确率超过传统监督模型(如ImageNet上达到75%)。
- 视频问答任务准确率提升30%以上。
应用场景:
- 智能客服(结合用户图片和文字描述解答问题)
- 社交媒体自动生成图片标签或视频摘要
三、多模态大模型阶段(2023至今)
功能特点:
- 支持任意模态输入输出(如图片+语音生成文本),复杂推理(如医疗诊断)。
- 模型具备“思维链”能力,可逐步分析多模态信息。
技术升级:
- 分词器技术:GPT-4将图片切割为网格并离散化为token,与文本统一处理。
- 动态交互模块:BLIP-2的Q-Former模块让图文特征实时对话,提升细粒度理解。
- 无编码器架构:如Fuyu-8b直接将图像像素输入Transformer,简化处理流程。
性能突破:
- 医疗诊断错误率降低30%(如结合CT影像和病历生成报告)。
- 图像描述生成准确率提升40%以上,支持高分辨率输入(如1120×1120像素)。
应用场景:
- 自动驾驶:融合激光雷达、摄像头、语音指令实现实时决策
- 虚拟试衣:根据文字生成3D服装模型,支持在线试穿
- 教育领域:生成带语音讲解的PPT(如mPLUG-Owl模型)
四、技术路线分化
1.统一编码架构(如CLIP):分别编码不同模态后对比学习,适合检索任务。
2.深度融合架构(如Flamingo):用跨模态注意力动态对齐特征,适合问答和生成任务。
3.纯解码器架构(如Fuyu-8b):取消独立编码器,直接处理多模态输入,降低延迟。
五、未来方向
1.模态扩展:向3D模型、触觉等延伸(如手术机器人触觉反馈)。
2.轻量化训练:用知识蒸馏技术压缩百亿参数模型,降低算力需求。
3.安全治理:解决AI生成图片的版权争议(如数字水印技术)。
典型案例:
- 医疗领域:DeepMind的Enformer模型结合DNA数据预测基因表达。
- 工业设计:阿里巴巴M6模型根据文字生成服装设计图,缩短设计周期。