一、明确升级目标与需求(1-2周)
1.核心目标定位
- 降本增效:如启明智显通过低功耗硬件+算法优化降低硬件成本,临平制造业利用AI调度系统缩短服装生产周期。
- 功能扩展:参考毛绒玩具的语音交互功能,或安防系统的异常行为检测。
- 风险控制:如智慧安防通过AI实时监控网络威胁。
2.需求优先级排序
- 优先高频、低风险场景(如客服问答、数据报表生成),再逐步覆盖复杂场景(如预测分析、自动化控制)。
- 案例:Filez文档管理系统先解决智能分类与搜索,再扩展协同共享功能。
二、数据准备与治理(2-4周)
1.数据清洗与标注
- 整理历史数据,剔除无效/重复信息(如临平制造业分析生产数据优化流程)。
- 对非结构化数据(如图片、语音)进行标注,如安防系统需标注人脸、异常行为数据。
2.数据存储优化
- 建立统一数据库支持实时调用(参考临平制造业的数据整合案例)。
- 使用分布式存储(如Hadoop)应对海量数据,如智慧安防处理10万路视频流。
三、技术选型与工具部署(1-3周)
1.AI技术选择
- 监督学习:适用于分类、预测任务(如库存预测)。
- 无监督学习:用于聚类分析(如客户分群)。
- 预训练模型:直接调用开源模型(如BERT、GPT)加速开发