一、基础概念类问题
Q1:什么是RAG?其核心价值是什么?
答:
RAG(检索增强生成)是一种结合检索技术与生成模型的技术框架。其核心价值体现在:
1.知识整合能力:通过检索组件实时获取外部知识库信息
2.准确性提升:基于检索结果生成回答,减少模型幻觉(Hallucination)
3.动态知识更新:无需重新训练模型即可更新知识库,适应时效性需求
Q2:RAG与传统语言模型(如GPT)的核心区别?
答:
维度 | 传统语言模型 | RAG |
---|---|---|
知识来源 | 预训练数据 | 外部知识库+预训练数据 |
响应生成逻辑 | 基于记忆生成 | 检索→验证→生成多阶段流程 |
可解释性 | 黑箱生成 | 可追溯检索文档作为依据 |
应用场景 | 通用文本生成 | 知识密集型任务(如QA、医疗) |
二、技术实现类问题
Q3:RAG中的检索模型承担哪些关键角色?
答:
1.语义匹配:通过向量化技术(如Sentence-BERT)计算query与文档相似度
2.多模态检索:支持文本、图像、结构化数据的联合检索(需自定义索引结构)
3.动态过滤:结合元数据(文档时间、权威性)优化召回结果
Q4:如何处理RAG中的长文档检索问题?
解决方案:
- 分块策略:按语义段落切分(200-600字),而非固定长度
- 层次化索引:先检索文档级元数据,再定位具体段落
- 注意力增强:在生成阶段对长文本关键片段加权(如MaxSim算法)
Q5:如何评估RAG系统的性能?
评估指标:
1.检索质量:Recall@k、MRR(平均倒数排名)
2.生成质量:BLEU、ROUGE、人工标注的事实正确率
3.端到端效率:响应延迟(需平衡检索精度与速度)
三、优化策略类问题
Q6:如何解决检索结果与生成内容不匹配问题?
优化路径:
1.级联增强(Cascade Enhancement):
- 首次生成后提取关键词,二次检索补充上下文
2.重排序机制(Re-ranking): - 使用交叉编码器(Cross-Encoder)对Top K结果重排序
3.反馈学习: - 记录用户对生成结果的修正,反向优化检索策略
Q7:如何减少RAG系统的模型幻觉?
关键技术:
- 可信度阈值:当检索结果相似度低于阈值时,返回「未知答案」
- 证据标注:在生成答案中标注引用来源(如[Doc1][Doc2])
- 对抗训练:构造包含错误检索结果的负样本训练生成模型
四、场景应用类问题
Q8:医疗领域RAG系统需注意哪些特殊问题?
行业实践:
1.数据安全:医疗文档需本地化存储和加密检索
2.术语一致性:构建医学本体库优化同义词检索(如“心梗”=“心肌梗死”)
3.时效性验证:自动过滤过时指南(如5年前的治疗方案)
Q9:如何设计电商客服场景的RAG系统?
功能模块: