一、产品定位
针对医疗行业现存几大痛点:①优质医疗资源集中导致的供需失衡 ②医生工作负担过重 ③检查排队时间长 ④医疗数据孤岛问题 ⑤线上问诊效率低下等,打造C端智能问诊服务系统。通过多模态交互(文字/语音/影像/结构化表单)实现三级医院分诊前置化,预计可减少30%无效线下就诊,缩短50%检查等待时间。
二、核心功能模块
- 智能预问诊系统(核心突破点)
-
多模态症状采集:
- 支持语音描述(方言识别)、文字输入、体态影像(皮肤病变/关节活动视频)及标准化量表(视觉模拟疼痛评分)
- 动态槽位填充技术:基于主诉自动生成追问逻辑链(疼痛性质、强度、持续时间等7类医学问诊维度)
-
疾病预判引擎:
# 伪代码示例:症状特征向量化处理 def symptom_encoder(text, audio, image): text_embed = clinical_bert(text) audio_feature = wav2vec(audio) image_feature = resnet_medical(image) return multimodal_fusion([text_embed, audio_feature, image_feature])
集成《国家基层诊疗指南》覆盖300+常见病种,输出带置信度的鉴别诊断建议
- 智能检查决策系统
-
检查项目推荐:
- 基于预问诊结果生成分级检查清单(胃痛场景自动关联幽门螺杆菌检测/胃镜适应症)
- 集成区域医疗机构的实时检查资源(CT/MRI档期可视化)
-
智能预约中台:
支持医保比价与报告互通承诺(对接区域影像云)
- 报告解读与治疗规划
-
多模态报告分析:
- DICOM影像智能标注(肺结节定位/血管斑块分级)
- 检验数值异常关联(自动标注危急值并触发预警)
-
治疗方案生成:
结构化输出包含:药物相互作用检查(对接药监数据库)、康复训练视频库(关节术后3D动作指导)、中医调理方案(体质辨识模块)
- 医患协同平台
-
医生工作台插件:
<!-- 电子病历自动生成模板 --> <template type="消化内科"> <chief_complaint>${主诉}</chief_complaint> <history auto_fill="true"/> <diagnosis suggestion="${AI鉴别诊断}"/> </template>
支持语音录入自动结构化(SOAP病历规范)
-
患者随访系统:
基于治疗阶段推送定制化提醒(药物依从性监督、复诊智能排期)
三、技术架构设计
- 多模态处理引擎
- 语音模块:医疗专有名词识别准确率>92%(自建医学音素库)
- 影像模块:支持X光/CT/MRI等12类医学影像预处理
- 文本模块:中文医学知识图谱(含50万实体+200万关系)
- 混合推理系统
- 规则引擎:疾病诊断标准(ICD-11)、检查适应证规则库
- 机器学习:LightGBM疾病预测模型(AUC 0.87)
- 大模型层:基于LLaMA-Med微调的决策解释生成器
四、实施路径(五个月落地计划)
阶段 | 里程碑 | 关键技术验证 |
---|---|---|
M1 | 需求闭环验证 | 完成10个典型病种问诊逻辑验证(腹痛/发热/头晕等) |
M2 | 最小化原型开发 | 搭建核心问诊引擎+3类影像处理模块 |
M3 | 医疗机构对接 | 接入2家三甲医院PACS系统+5家第三方检测机构 |
M4 | 合规性建设 | 通过医疗器械软件认证(二类证) |
M5 | 试点运营 | 在3个城市开展2000例临床对照试验 |
五、风险控制
- 医疗合规风险:建立医学专家委员会(至少含3名副高以上医师)进行全流程监督
- 数据安全体系:采用联邦学习技术,原始数据不出医疗机构
- 医患信任建立:所有AI建议需明确标注置信度及依据文献(自动关联UpToDate临床证据)
六、商业模式
- 基础服务层:免费提供智能预问诊+报告解读
- 增值服务层:
- 检查预约服务费(机构返佣15-20%)
- 商业保险定制服务(健康管理数据接口)
- 数据价值层:匿名流行病学分析报告(向药企/研究机构提供)
产品创新点:
- 首创"预问诊-检查决策-治疗跟踪"完整数字诊疗链(在线问诊全流程重构)
- 多模态数据融合提升诊断完整度(相较纯文本问诊提升40%信息密度)
- 建立非侵入式医疗资源调度网络(缓解专家号/检查排期/床位紧张问题)
该方案通过模块化开发可实现快速落地,核心问诊模块可基于现有LLM进行改造(GPT类模型对话逻辑复用),重点资源应投入医学知识库建设和机构合作谈判。