SPOJ 16637. Non-Square Free Numbers

题目地址:http://www.spoj.com/problems/IE3/

题目大意:求第n个有平方数因子的数。

算法讨论:

        二分答案。对于答案mid,从2到sqrt(mid)枚举i,则从1~mid中含有i^2因子的数有mid/(i^2)个。

        需要注意2点:1)对于完全平方数i,因子i在之前已经被统计过了,因此忽略即可。

                                  2)根据容斥原理,若i有奇数个因子,那么ans+=mid/(i^2),否则ans-=mid/(i^2)。

        我们发现上面2点和莫比乌斯函数的意义吻合,因此预处理出莫比乌斯函数即可。

Code:

#include <cmath>
#include <cstdio>

#define N 10000000

long long n;
int T,p[N+10],miu[N+10],pr[N+10];

using namespace std;

inline void prepare(){
	for (int i=2;i<=N;++i){
		if (!p[i]) p[i]=i,miu[i]=-1,pr[++pr[0]]=i;
		for (int j=1;j<=pr[0] && i*pr[j]<=N;++j){
			p[i*pr[j]]=pr[j];
			if (p[i]==pr[j] || !miu[i]) miu[i*pr[j]]=0;else miu[i*pr[j]]=miu[i]==1?-1:1;
			if (i%pr[j]==0) break;
		}
	}
}

inline long long check(long long mid){
	long long res=0;
	for (int i=2,lim=(int)sqrt(mid);i<=lim;++i){
		if (!miu[i]) continue;
		res-=miu[i]*mid/((long long)i*i);
	}
	return res;
}

int main(){
	scanf("%d",&T);
	prepare();
	while (T--){
		scanf("%lld",&n);
		long long l=1,r=1000000000000LL,ans=0;
		while (l<=r){
			long long mid=(l+r)/2;
			long long t=check(mid);
			if (t<n) l=mid+1;else ans=mid,r=mid-1;
		}
		printf("%lld\n",ans);
	}
	return 0;
}

By Charlie Pan

Aug 25,2014

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值