1、使用函数输出指定范围内的Fibonacci数
题目: 本题要求实现一个计算Fibonacci数的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有Fibonacci数。所谓Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列。
函数接口定义:
int fib( int n );
void PrintFN( int m, int n );
其中函数fib须返回第n项Fibonacci数;函数PrintFN要在一行中输出给定范围[m, n]内的所有Fibonacci数,相邻数字间有一个空格,行末不得有多余空格。如果给定区间内没有Fibonacci数,则输出一行“No Fibonacci number”。
裁判测试程序样例:
#include <stdio.h>
int fib( int n );
void PrintFN( int m, int n );
int main()
{
int m, n, t;
scanf("%d %d %d", &m, &n, &t);
printf("fib(%d) = %d\n", t, fib(t));
PrintFN(m, n);
return 0;
}
/* 你的代码将被嵌在这里,与上述测试代码一起提交 */
输入样例1:
20 100 7
输出样例1:
fib(7) = 13
21 34 55 89
输入样例2:
2000 2500 8
输出样例2:
fib(8) = 21
No Fibonacci number
代码:
#include <stdio.h>
int fib( int n )
{
int a=1,b=1,c,i;
if(n==1){
return 1;
}
else{
if(n==2)
{ return 1;}
else{
for(i=3;i<=n;i++){
c=a+b;
a=b;
b=c;
}
return b;
}
}
}
void PrintFN( int m, int n )
{
int i=1,count=0;
while(fib(i)<=n){
if(fib(i)>=m){
count++;
if(count==1){
printf("%d",fib(i));
}
else
{
printf(" %d",fib(i));
}
}
i++;
}
if(count==0){
printf("No Fibonacci number\n");
}
}
int main()
{
int m, n, t;
scanf("%d %d %d", &m, &n, &t);
printf("fib(%d) = %d\n", t, fib(t));
PrintFN(m, n);
return 0;
}
2、使用函数验证哥德巴赫猜想
题目: 本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。
函数接口定义:
int prime( int p );
void Goldbach( int n );
其中函数prime当用户传入参数p为素数时返回1,否则返回0;函数Goldbach按照格式“n=p+q”输出n的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
int prime( int p );
void Goldbach( int n );
int main()
{
int m, n, i, cnt;
scanf("%d %d", &m, &n);//测试用例中m不一定小于n
if ( prime(m) != 0) printf("%d is a prime number\n", m);
if ( m < 6) m = 6;
if ( m%2) m++;cnt = 0;
for( i=m; i<=n; i+=2) {
Goldbach(i);
cnt++;
if ( cnt%5) printf(", ");
else printf("\n");
}
return 0;
}
/* 你的代码将被嵌在这里,与上述测试代码一起提交 */
输入样例:
89 100
输出样例:
89 is a prime number
90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97,
代码1:
#include <stdio.h>
#include <math.h>
int prime( int p )
{
int i,flag=1;
if(p<=1)flag=0;
else if(p==2)flag=1;
else
for(i=2;i<=sqrt(p)+1;i++){
if(p%i==0)flag=0;
}
return flag;
}
void Goldbach(int n)
{
int i;
for(i=3;i<=n/2;i++){
if(prime(i)&&prime(n-i)){
printf("%d=%d+%d",n,i,n-i);
break;
}
}
}
int main()
{
int m,n,i,cnt,a;
scanf("%d%d",&m,&n);
if(m>n){
a=m;
m=n;
n=a;
}
else m<=n;
if(prime(m)!=0)printf("%d is a prime number\n",m);
if(m<6)m=6;
if(m%2)m++;
cnt=0;
for(i=m;i<=n;i+=2){
Goldbach(i);
cnt++;
if ( cnt%5) printf(", ");
else printf("\n");
}
return 0;
}
代码2:
#include<stdio.h>
#include<math.h>
int prime( int p );
void Goldbach( int n );
int main()
{
int m, n, i, cnt;
scanf("%d %d", &m, &n);
if(m>n)
{
i=m;
m=n;
n=i;
}
if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
if ( m < 6 ) m = 6;
if ( m%2 ) m++;
cnt = 0;
for( i=m; i<=n; i+=2 ) {
Goldbach(i);
cnt++;
if ( cnt%5 ) printf(", ");
else printf("\n");
}
return 0;
}
int prime( int p )
{
int i ;
if(p<=1){
return 0;
}else if (p==2){
return 1;
}else{
for(i=2;i<=p/2;i++){
if(p%i==0){
return 0;
} else if(i>p/2){
return 1;
}
}
}
return 1;
}
void Goldbach( int n ){
int a;
int count=0;
for(a=2; a<=n;a++){
if(prime(a)==1&&prime(n-a)==1){
count++;
if(count==1){
printf("%d=%d+%d",n,a,n-a);
}
}
}
}