题目大意:给出一张有向无环图的信息,并给出M个顶点序列的排列,判断这些排列是否是拓扑排序。
考察拓扑排序的定义。对于图中的任意有向边u->v,在拓扑排序中u应该在v的前面。可以利用这个性质有很多种做法,也可以用求拓扑排序的做法反过来验证是否是拓扑排序。
①利用求拓扑排序的做法反过来验证。求拓扑排序时,首先将入度为0的节点全部入队。然后对队首元素,将所有它的后继节点的入度减1,如果该后继节点的入度变为0,则将其入队。最后将N个节点全部入队后,就得到了拓扑排序。那么反过来,对于一个N个节点的顶点序列,依次验证其入度是否为0,并将每个入度为0的后继节点的入度减1。如果某个节点的入度不为0,那么说明不是拓扑排序。
AC代码:
#include <vector>
#include <cstdio>
using namespace std;
const int MAXN = 1010;
vector<int> G[MAXN];
int main()
{
int N, M, K;
scanf("%d%d", &N, &M);
vector<int> inDegree(N+1);
for (int i = 0; i < M; ++i)
{
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
inDegree[v]++;
}
scanf("%d", &K);
vector<int> ans;
for (int i = 0; i < K; ++i)
{
vector<int> inDegreeTmp = inDegree;
bool flag = true;
for (int j = 0; j < N; ++j)
{
int value;
scanf("%d", &value);
if(inDegreeTmp[value] != 0) flag = false;
for (int k = 0; flag && k < G[value].size(); ++k)
inDegreeTmp[G[value][k]]--;
}
if(!flag) ans.push_back(i);
}
for (int k = 0; k < ans.size(); ++k)
{
printf("%d", ans[k]);
if(k < ans.size() - 1) printf(" ");
}
printf("\n");
return 0;
}
② 其他的一些做法:拓扑排序要求有向边u->v,u排在v前,那么可以在输入时记录每个顶点的位置,之后依次遍历每个节点,对于节点u的所有后继节点,如果它的位置排在u的前面,那么说明不是拓扑排序。这个性质换一种说法,u排在v前面,那么就不存在v->u这条边,所以也可以遍历整个序列,然后对每个节点u,遍历序列中排在它后面的节点,如果该节点到u有边,那么也不是拓扑排序。
AC代码,第一种思路:
#include <vector>
#include <cstdio>
using namespace std;
const int MAXN = 1010;
vector<int> G[MAXN];
bool judge(vector<int> &v, int N)
{
for (int i = 1; i <= N; ++i)
{
for (int j = 0; j < G[i].size(); ++j)
{
if(v[G[i][j]] < v[i]) return false;
}
}
return true;
}
int main()
{
int N, M, K;
scanf("%d%d", &N, &M);
for (int i = 0; i < M; ++i)
{
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
scanf("%d", &K);
vector<int> ans;
for (int i = 0; i < K; ++i)
{
vector<int> v(N+1);
for (int j = 0; j < N; ++j)
{
int value;
scanf("%d", &value);
v[value] = j;
}
bool flag = judge(v, N);
if(!flag) ans.push_back(i);
}
for (int k = 0; k < ans.size(); ++k)
{
printf("%d", ans[k]);
if(k < ans.size() - 1) printf(" ");
}
printf("\n");
return 0;
}