动态规划问题记录

这篇博客详细记录了动态规划在解决不同条件下的硬币凑零钱问题的应用,包括当硬币不可重复使用和可重复使用时,以及是否考虑顺序的影响,递归求解各种情况下的组合总数及最少元素数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ⅰ:凑零钱问题:

①给出不重复的数组 coins 表示硬币的面额,数字 amount 表示需要凑成的金额。如果每种金额的硬币只能用一次,输出所有不重复的可能的组合的总数。

递归:

class Solution {
private:
    int helper(vector<int>& coins, int index, int amount)
    {
        if(amount == 0) return 1;
        if(amount < 0 || index >= coins.size()) return 0;
        int res = 0;
        for (int i = index; i < coins.size(); ++i)
        {
            if(amount < coins[i]) continue;
            res += helper(coins, i + 1, amount - coins[i]);
        }
        return res;
    }
public:
    int change(int amount, vector<int>& coins) {
        return helper(coins, 0, amount);
    }
};

② 如果每种金额的硬币只能使用一次,但是不同的选用顺序被认为是不同的组合,例如{1,2}和{2,1}被认为是不同的组合,输出所有可能的组合的总数。

递归:

class Solution {
private:
    vector<bool> used;
    int helper(vector<int>& coins, int amount)
    {
        if(amount == 0) return 1;
        if(amount < 0) return 0;
        int res = 0;
        for (int i = 0; i < coins.size(); ++i)
        {
            if(amount < coins[i] || used[i]) continue;
            used[i] = true;
            res += helper(coins, amount - coins[i]);
            used[i] = false;
        }
        return res;
    }
public:
    int change(int amount, vector<int>& coins) {
        used = vector<bool>(coins.size(), false);
        return helper(coins, amount);
    }
};

③ 如果每种金额的硬币能够重复使用,输出所有不重复的可能组合的总数:

递归:

class Solution {
private:
    int helper(vector<int>&coins, int index, int amount)
    {
        if(amount == 0) return 1;
        if(amount < 0 || index >= coins.size()) return 0;
        int res = 0;
        for (int i = 0; i * coins[index]<= amount; ++i)
        {
            res += helper(coins, index + 1, amount - i * coins[index]);
        }
        return res;
    }
public:
    int change(int amount, vector<int>& coins) {
        return helper(coins, 0, amount);
    }
};

④ 如果每种金额的硬币能够重复使用,并且不同的取用顺序被认为是不同的组合,例如 {1,2} 和 {2 , 1}看作不同的组合,输出所有可能组合的总数:

递归:

class Solution {
private:
    int helper(vector<int>&coins, int amount)
    {
        if(amount == 0) return 1;
        if(amount < 0) return 0;
        int res = 0;
        for (int i = 0; i < coins.size(); ++i)
        {
            res += helper(coins, amount - coins[i]);
        }
        return res;
    }
public:
    int change(int amount, vector<int>& coins) {
        return helper(coins, amount);
    }
};

⑤ 如果每种金额的硬币能够重复使用,输出能够组成 amount 的最少元素的数量,如果不能组成amount, 输出-1。

递归:

class Solution {
private:
    int maxNum;
    int helper(vector<int>& coins, int amount)
    {
        if(amount == 0) return 0;
        if(amount < 0) return maxNum;
        int res = maxNum;
        for (int i = 0; i < coins.size(); ++i)
        {
            if(amount < coins[i]) continue;
            res = min(res, 1 + helper(coins, amount - coins[i]));
        }
        return res;
    }
public:
    int coinChange(vector<int>& coins, int amount) {
        maxNum = amount + 1;
        int ret = helper(coins, amount);
        return ret == maxNum ? -1 : ret;
    }
};

⑥ 如果每种金额的硬币只能使用1次,输出能够组成 amount 的最少元素的数量,如果不能组成 amount,输出 -1。

递归:

class Solution {
private:
    int maxNum;
    int helper(vector<int>& coins, int amount, int index)
    {
        if(amount == 0) return 0;
        if(amount < 0 || index >= coins.size()) return maxNum;
        int res = maxNum;
        for (int i = index; i < coins.size(); ++i)
        {
            if(amount < coins[i]) continue;
            res = min(res, 1 + helper(coins, amount - coins[i], i + 1));
        }
        return res;
    }
public:
    int coinChange(vector<int>& coins, int amount) {
        maxNum = amount + 1;
        int ret = helper(coins, amount, 0);
        return ret == maxNum ? -1 : ret;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值