思路:
1. 定义状态dp[pos][time], 表示从此状态到终点需要的等待时间。
2. 预处理出每个状态是否有向左或向右的火车。
3. 记忆化搜索的优点在于思路清晰,无需考虑递推顺序,注意仅dp[n][T] = 0。
4. 采用填表法进行递推,dp[i][j] = min(dp[i][j+1]+1, dp[i+1][j+ti], dp[i-1][j+t(i-1)])。
1. 定义状态dp[pos][time], 表示从此状态到终点需要的等待时间。
2. 预处理出每个状态是否有向左或向右的火车。
3. 记忆化搜索的优点在于思路清晰,无需考虑递推顺序,注意仅dp[n][T] = 0。
4. 采用填表法进行递推,dp[i][j] = min(dp[i][j+1]+1, dp[i+1][j+ti], dp[i-1][j+t(i-1)])。
#include <set>
#include <map>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <deque>
#include <cstdio>
#include <string>
#include <vector>
#include <cctype>
#include <sstream>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <algorithm>
#define SF(a) scanf("%d", &a)
#define PF(a) printf("%d\n", a)
#define SFF(a, b) scanf("%d%d", &a, &b)
#define SFFF(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define SFFFF(a, b, c, d) scanf("%d%d%d%d", &a, &b, &c, &d)
#define CLEAR(a, b) memset(a, b, sizeof(a))
#define IN() freopen("in.txt", "r", stdin)
#define OUT() freopen("out.txt", "w", stdout)
#define FOR(i, a, b) for(int i = a; i < b; ++i)
#define LL long long
#define mod 10007
#define inf 100000007
#define eps 1e-12
using namespace std;
int buf[20] ;
int read() {
int x = 0; char ch = getchar(); bool f = 0;
while (ch < '0' || ch > '9') { if (ch == '-') f = 1; ch = getchar(); }
while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
return f ? -x : x;
}
void write(int x) {
if (!x) { putchar(48); return; }
int l = 0; if (x < 0) putchar('-'), x = -x;
while (x) buf[++l] = x % 10, x = x / 10;
while (l) putchar(buf[l--] + 48);
}
//-------------------------chc------------------------------//
const int maxt = 205;
const int maxn = 55;
int n, T;
int t[maxn] = { 0 };
bool have_r[maxn][maxt], have_l[maxn][maxt], vis[maxn][maxt];
int dp[maxn][maxt];
void pre() {
CLEAR(have_r, 0), CLEAR(have_l, 0);
CLEAR(dp, 0), CLEAR(vis, 0);
int M1 = read(), s;
FOR(i, 0, M1) {
SF(s);
FOR(j, 1, n) {
if (s > T) break;
have_l[j][s] = true;
s += t[j];
}
}
int M2 = read();
FOR(i, 0, M2) {
SF(s);
for (int j = n; j > 1; --j) {
if (s > T) break;
have_r[j][s] = true;
s += t[j - 1];
}
}
}
int solve(int i, int j) { // pos, time
if (vis[i][j]) return dp[i][j];
vis[i][j] = true;
int &ans = dp[i][j];
if (i == n && j == T) return ans = 0;
else if (j >= T) return ans = inf;
ans = inf;
bool l = have_l[i][j], r = have_r[i][j];
if (r) ans = min(ans, solve(i - 1, j + t[i - 1]));
if (l) ans = min(ans, solve(i + 1, j + t[i]));
return ans = min(solve(i, j + 1) + 1, ans);
}
void solve_() {
dp[n][T] = 0;
FOR(i, 1, n) dp[i][T] = inf;
for (int j = T - 1; j >= 0; --j) {
FOR(i, 1, n + 1) {
int &ans = dp[i][j];
ans = dp[i][j + 1] + 1;
if (have_l[i][j] && j + t[i] <= T) ans = min(ans, dp[i + 1][j + t[i]]);
if (have_r[i][j] && j + t[i - 1] <= T) ans = min(ans, dp[i - 1][j + t[i - 1]]);
}
}
}
void debug() {
FOR(i, 1, n + 1) {
FOR(j, 0, T + 1) {
printf("%d ", dp[i][j]);
}
cout << endl;
}
}
int main() {
//IN(); OUT();
int kase = 1;
while (SF(n) && n) {
SF(T);
FOR(i, 1, n) SF(t[i]);
pre();
//solve(1, 0);
solve_();
//debug();
int ans = dp[1][0];
printf("Case Number %d: ", kase++);
if (ans >= inf) puts("impossible");
else PF(ans);
}
return 0;
}